Abidi SR: Ontology-based knowledge modeling to provide decision support for comorbid diseases. 2011. Paper presented at the 19th European Conference in Artificial Intelligence. Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0–79952016090&partnerID=40&md5=d6e8e7441e3e9118fa395e5fc0b77b95
Book
Google Scholar
Arts D, de Keizer N, Scheffer GJ, de Jonge E: Quality of data collected for severity of illness scores in the Dutch National Intensive Care Evaluation (NICE) registry. Intensive Care Medicine 2002a,28(5):656–659. 10.1007/s00134-002-1272-z
Article
Google Scholar
Arts DG, de Keizer NF, Scheffer GJ: Defining and improving data quality in medical registries: a literature review, case study, and generic framework. Journal of the American Medical Informatics Association 2002b,9(6):600–611. 10.1197/jamia.M1087
Article
Google Scholar
Arts DG, Bosman RJ, de Jonge E, Joore JC, de Keizer NF: Training in data definitions improves quality of intensive care data. Critical Care 2003,7(2):179–184. 10.1186/cc1886
Article
Google Scholar
Azaouagh A, Stausberg J: Frequency of hospital-acquired pneumonia–comparison between electronic and paper-based patient records. Pneumologie 2008,62(5):273–278. 10.1055/s-2008-1038099
Article
Google Scholar
Brank J, Grobelnik M, Mladenić D: A survey of ontology evaluation techniques. 2005. Paper presented at the Proc. of 8th Int. Multi-Conf. Information Society
Google Scholar
Brewster C, Alani H, Dasmahapatra S, Wilks Y: Data Driven Ontology Evaluation. 2004. Paper presented at the International Conference on Language Resources and Evaluation. Retrieved from
http://eprints.soton.ac.uk/259062/
Google Scholar
Britt H, Miller G, Bayrarn C: The quality of data on general practice - a discussion of BEACH reliability and validity. Australian Family Physician 2007,36(1–2):36–40.
Google Scholar
Brüggemann S, Grüning F: Using ontologies providing domain knowledge for data quality management. Studies in Computational Intelligence 2009, 221: 187–203. 10.1007/978-3-642-02184-8_13
Google Scholar
Buranarach M, Chalortham N, Chatvorawit P, Thein Y, Supnithi T: An ontology-based framework for development of clinical reminder system to support chronic disease healthcare. 2009.
Google Scholar
Chen FH: Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases. Mathematical Biosciences 2009,217(2):125–133. 10.1016/j.mbs.2008.11.005
Article
Google Scholar
Chen WL, Zhang SD, Gao X: Anchoring the Consistency Dimension of Data Quality Using Ontology in Data Integration. 2009 Sixth Web Information Systems and Applications Conference, IEEE 2009.
Google Scholar
Choquet R, Qouiyd S, Ouagne D, Pasche E, Daniel C, Boussaïd O, et al.: The information quality triangle: A methodology to assess clinical information quality. 2010. Paper presented at the 13th World Congress on Medical and Health Informatics, Medinfo 2010, Cape Town
Google Scholar
Cunningham-Myrie C, Reid M, Forrester TE: A comparative study of the quality and availability of health information used to facilitate cost burden analysis of diabetes and hypertension in the Caribbean. West Indian Medical Journal 2008,57(4):383–392.
Google Scholar
de Lusignan S, Khunti K, Belsey J, Hattersley A, van Vlymen J, Gallagher H, et al.: A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data. Diabetic Medicine 2010, 27: 203–209. 10.1111/j.1464-5491.2009.02917.x
Article
Google Scholar
Devillers R, Bedard Y, Jeansoulin R, Moulin B: Towards spatial data quality information analysis tools for experts assessing the fitness for use of spatial data. International Journal of Geographical Information Science 2007,21(3):261–282. 10.1080/13658810600911879
Article
Google Scholar
Esposito M: Congenital Heart Disease: An ontology-based approach for the examination of the cardiovascular system. In Knowledge - Based Intelligent Information and Engineering Systems, Pt 1, Proceedings Vol. 5177 Edited by: Lovrek I. 2008a, 509–516.
Chapter
Google Scholar
Esposito M: An ontological and non-monotonic rule-based approach to label medical images. Los Alamitos: IEEE Computer Soc; 2008b.
Google Scholar
Euzenat J: Semantic Precision and Recall for Ontology Alignment Evaluation. 2007. Paper presented at the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07)
Google Scholar
Gangemi A, Catenacci C, Ciaramita M, Lehmann J: Modelling ontology evaluation and validation. 2006. Paper presented at the Proceedings of the 3rd European conference on The Semantic Web: research and applications
Book
Google Scholar
Gedzelman S, Simonet M, Bernhard D, Diallo G, Palmer P: Building an ontology of cardio-vascular diseases for concept-based information retrieval. Computers in Cardiology 2005, 32: 255–258.
Google Scholar
Gillies A: Assessing and improving the quality of information for health evaluation and promotion. Methods of Information in Medicine 2000a,39(3):4.
Google Scholar
Gillies A: Assessing and improving the quality of information for health evaluation and promotion. Methods of Information in Medicine 2000b,39(3):208–212.
Google Scholar
Gupta A, Ludäscher B, Grethe JS, Martone ME: Towards a formalization of disease-specific ontologies for neuroinformatics. Neural Networks 2003,16(9):1277–1292. 10.1016/j.neunet.2003.07.008
Article
Google Scholar
Hamilton WT, Round AP, Sharp D, Peters TJ: The quality of record keeping in primary care: a comparison of computerised, paper and hybrid systems. The British Journal of General Practice 2003,53(497):929–933. discussion 933
Google Scholar
Huaman MA, Araujo-Castillo RV, Soto G, Neyra JM, Quispe JA, Fernandez MF, et al.: Impact of two interventions on timeliness and data quality of an electronic disease surveillance system in a resource limited setting (Peru): a prospective evaluation. BMC Med Inform Decis Mak. 2009, 9: 16. 10.1186/1472-6947-9-16
Article
Google Scholar
Ivanova I, Morales J, de By RA, Beshe TS, Gebresilassie MA: Searching for spatial data resources by fitness for use. Journal of Spatial Science 2013,58(1):15–28. 10.1080/14498596.2012.759087
Article
Google Scholar
Jacquelinet C, Burgun A, Delamarre D, Strang N, Djabbour S, Boutin B, et al.: Developing the ontological foundations of a terminological system for end-stage diseases, organ failure, dialysis and transplantation. International Journal of Medical Informatics 2003,70(2–3):317–328. doi:10.1016/S1386–5056(03)00046–7
Article
Google Scholar
Jara AJ, Blaya FJ, Zamora MA, Skarmeta AFG: An Ontology and Rule Based Intelligent Information System to Detect and Predict Myocardial Diseases. New York: IEEE; 2009.
Book
Google Scholar
Kahn BK, Strong DM, Wang RY: Information quality benchmarks: product and service performance. Communications of the ACM 2002,45(4):8.
Article
Google Scholar
Kahn MG, Batson D, Schilling LM: Data model considerations for clinical effectiveness researchers. Medical Care 2012, 50 Suppl: S60-S67.
Article
Google Scholar
Kerr K, Norris A, Stockdale R: Data quality, information and decision making: a healthcare case study. 2007. Paper presented at the 18th Australasian Conference on Information Systems, Toowoomba, Australia
Google Scholar
Kiragga AN, Castelnuovo B, Schaefer P, Muwonge T, Easterbrook PJ: Quality of data collection in a large HIV observational clinic database in sub-Saharan Africa: implications for clinical research and audit of care. Journal of the International AIDS Society 2011.,14(1):
Lain SJ, Roberts CL, Hadfield RM, Bell JC, Morris JM: How accurate is the reporting of obstetric haemorrhage in hospital discharge data? A validation study. Australian and New Zealand Journal of Obstetrics and Gynaecology 2008,48(5):481–484. 10.1111/j.1479-828X.2008.00910.x
Article
Google Scholar
Lee CS, Wang MH, Acampora G, Loia V, Hsu CY: Ontology-based Intelligent Fuzzy Agent for Diabetes Application. New York: IEEE; 2009.
Book
Google Scholar
Li Z: An ontology-driven concept-based information retrieveal approach for Web documents. Edmonton, Alberta: University of Alberta; 2010.
Google Scholar
Li HC, Ko WM: Automated food ontology construction mechanism for diabetes diet care. New York: IEEE; 2007.
Book
Google Scholar
Liaw S, Taggart J, Dennis S, Yeo A: Data quality and fitness for purpose of routinely collected data – a general practice case study from an electronic Practice-Based Research Network (ePBRN). In AMIA 2011 Annual Symposium Improving Health: Informatics and IT Changing the World; October 22–26, 2011. Washington DC, US: AMIA; 2011:785–94.
Google Scholar
Liaw ST, Chen HY, Maneze D, Taggart J, Dennis S, Vagholkar S, Bunker J: Health reform: is routinely collected electronic information fit for purpose? Emergency Medicine Australasia 2012,24(1):57–63. 10.1111/j.1742-6723.2011.01486.x
Article
Google Scholar
Liaw ST, Rahimi A, Ray P, Taggart J, Dennis S, de Lusignan S, et al.: Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature. International Journal of Medical Informatics 2013,82(2):139. 10.1016/j.ijmedinf.2012.12.007
Article
Google Scholar
Lima L, Novais P, Costa R, Cruz J, Neves J: Decision Making Based on Quality-of-Information a Clinical Guideline for Chronic Obstructive Pulmonary Disease Scenario. In Distributed Computing and Artificial Intelligence Vol. 79. Edited by: de Leon A, de Carvalho F, Rodríguez-González S, De Paz Santana J, Rodríguez J. Berlin/Heidelberg: Springer; 2010:417–424.
Chapter
Google Scholar
Mabotuwana T, Warren J: An ontology-based approach to enhance querying capabilities of general practice medicine for better management of hypertension. Artificial Intelligence in Medicine 2009,47(2):87–103. 10.1016/j.artmed.2009.07.001
Article
Google Scholar
Maiga G, Williams D: A flexible approach for user evaluation of biomedical ontologies. International Journal of Computing and ICT Research 2008,2(2):62–74.
Google Scholar
Maragoudakis M, Lymberopoulos D, Fakotakis N, Spiropoulos K: A Hierarchical, Ontology-Driven Bayesian Concept for Ubiquitous Medical Environments- A Case Study for Pulmonary Diseases. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1–8. New York: IEEE; 2008:3807–3810.
Chapter
Google Scholar
McGarry K, Garfield S, Wermter S: Auto-extraction, representation and integration of a diabetes ontology using Bayesian networks. In Twentieth IEEE International Symposium on Computer-Based Medical Systems, Proceedings Edited by: Kokol P, Podgorelec V, MiceticTurk D, Zorman M, Verlic M. 2007, 612–617.
Chapter
Google Scholar
McJunkin MC: Precision and recall in title keyword searches. Information Technology and Libraries 1995,14(3):161–171.
Google Scholar
Min H, Manion FJ, Goralczyk E, Wong YN, Ross E, Beck JR: Integration of prostate cancer clinical data using an ontology. Journal of Biomedical Informatics 2009,42(6):1035–1045. 10.1016/j.jbi.2009.05.007
Article
Google Scholar
Mitchell J, Westerduin F: Emergency department information system diagnosis: how accurate is it? Emergency Medicine Journal 2008,25(11):784. 10.1136/emj.2007.050104
Article
Google Scholar
Moody DL, Shanks GG: Improving the quality of data models: empirical validation of a quality management framework. Information Systems 2003,28(6):619–650. 10.1016/S0306-4379(02)00043-1
Article
Google Scholar
Moro ML, Morsillo F: Can hospital discharge diagnoses be used for surveillance of surgical-site infections? Journal of Hospital Infection 2004,56(3):239–241. 10.1016/j.jhin.2003.12.022
Article
Google Scholar
Nimmagadda SL, Nimmagadda SK, Dreher H: Ontology based data warehouse modeling and managing ecology of human body for disease and drug prescription management. 2008 2nd IEEE International Conference on Digital Ecosystems and Technologies 2008, 465–473.
Google Scholar
O’Donoghue J, Herbert J, O’Reilly P, Sammon D: Towards Improved Information Quality: The Integration of Body Area Network Data within Electronic Health Records. In Ambient Assistive Health and Wellness Management in the Heart of the City, Proceeding Vol. 5597 Edited by: Mokhtari M, Khalil I, Bauchet J, Zhang D, Nugent C. 2009, 299–302.
Chapter
Google Scholar
Orme AM, Yao H, Etzkorn LH: Indicating ontology data quality, stability, and completeness throughout ontology evolution. Journal of Software Maintenance and Evolution-Research and Practice 2007,19(1):49–75. 10.1002/smr.341
Article
Google Scholar
Pannarale P, Catalano D, De Caro G, Grillo G, Leo P, Pappada G, et al.: GIDL: a rule based expert system for GenBank intelligent data loading into the molecular biodiversity database. BMC Bioinformatics 2012,13(Suppl 4):S4. 10.1186/1471-2105-13-S4-S4
Article
Google Scholar
Pathak J, Kiefer RC, Bielinski SJ, Chute CG: Mining the human phenome using semantic web technologies: a case study for type 2 diabetes. AMIA Annual Symposium Proceedings 2012a, 2012: 699–708.
Google Scholar
Pathak J, Kiefer RC, Chute CG: Using semantic web technologies for cohort identification from electronic health records for clinical research. AMIA Summits on Translational Science Proceedings 2012b, 2012: 10–19.
Google Scholar
Perez-Rey D, Maojo V, Garcia-Remesal M, Alonso-Calvo R, Billhardt H, Martin-Sanchez F, et al.: ONTOFUSION: ontology-based integration of genomic and clinical databases. Computers in Biology and Medicine 2006,36(7–8):712–730.
Article
Google Scholar
Pinto HS: Ontologies: how can they be built? Knowledge and Information Systems 2004,6(4):441–464. 10.1007/s10115-003-0138-1
Article
Google Scholar
Preece A, Missier P, Ernbury S, Jin B, Greenwood M: An ontology-based approach to handling information quality in e-science. Concurrency and Computation-Practice and Experience 2008,20(3):253–264.
Article
Google Scholar
Quan H, Li B, Saunders LD, Parsons GA, Nilsson CI, Alibhai A, et al.: Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Services Research 2008,43(4):1424–1441. 10.1111/j.1475-6773.2007.00822.x
Article
Google Scholar
Redman T: Measuring data accuracy. In Information Quality. Edited by: Rea W. Armonk NY: ME Sharpe Inc.; 2005:21.
Google Scholar
Spasic I, Ananiadou S: A flexible measure of contextual similarity for biomedical terms. Pacific Symposium on Biocomputing 2005, 10: 197–208.
Google Scholar
Stvilia B, Mon L, Yi YJ: A model for online consumer health information quality. Journal of the American Society for Information Science and Technology 2009,60(9):1781–1791. 10.1002/asi.21115
Article
Google Scholar
Topalis P, Dialynas E, Mitraka E, Deligianni E, Siden-Kiamos I, Louis C: A set of ontologies to drive tools for the control of vector-borne diseases. Journal of Biomedical Informatics 2011,44(1):42–47. 10.1016/j.jbi.2010.03.012
Article
Google Scholar
Valencia-Garcia R, Fernandez-Breis JT, Ruiz-Martinez JM, Garcia-Sanchez F, Martinez-Bejar R: A knowledge acquisition methodology to ontology construction for information retrieval from medical documents. Expert Systems 2008,25(3):314–334. 10.1111/j.1468-0394.2008.00464.x
Article
Google Scholar
Verma A, Kasabov N, Rush A, Song Q: Ontology based personalized modeling for chronic disease risk analysis: an integrated approach. 2008. Paper presented at the The 15th international conference on Advances in neuro-information processing
Google Scholar
Verma A, Fiasché M, Cuzzola M, Iacopino P, Morabito P, Kasabov N: Ontology based personalized modeling for type 2 diabetes risk analysis: An Investigated Approach. In ICONIP 2009, Part II. Edited by: Leung CS, Lee M, Chan JH. Berlin: Springer-Verlag; 2009:360–366.
Google Scholar
Wand Y, Wang Y: Anchoring data quality dimensions in ontological foundations. Communications of the ACM 1996,36(11):86–95.
Article
Google Scholar
Wang R: A product perspective on total data quality management. Communications of the ACM 1998,41(2):58–65. 10.1145/269012.269022
Article
Google Scholar
Wang R, Strong D, Guarascio L: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems 1996,12(4):5–33.
Article
Google Scholar
Wang MH, Lee CS, Li HC, Ko WM: Ontology-based fuzzy inference agent for diabetes classification. New York: IEEE; 2007.
Book
Google Scholar
Yao H, Orme A, Etzkorn LH: Cohesion metrics for ontology design and application. Journal of Computer Science 2005,1(1):107–113.
Article
Google Scholar
Young L, Tu SW, Tennakoon L, Vismer D, Astakhov V, Gupta A, et al.: Ontology Driven Data Integration for Autism Research. In 2009 22nd IEEE International Symposium on Computer-Based Medical Systems. New York: IEEE; 2009:54–60.
Google Scholar