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Model
Renewal processes have been a frequent object of analysis in early studies of stochastic 
processes, see Cox (1962), for instance. Only recently the idea of parallel renewal pro-
cesses receives more attention, see Borgelt and Picado-Muino (2012), Gaigalas (2003), 
Kai et al. (2014), CRC (1994), Kallen et al. (2010), Truccolo (2005), Modir et al. (2010). 
However, little emphasis has been given to the subject of stochastic dependence between 
processes so far, with few exceptions such as shown in Borgelt and Picado-Muino (2012) 
or Truccolo (2005), Modir et  al. (2010). Spike train analysis is an active neurobiologi-
cal research area calling for parallel renewal processes. The latter paper emphasizes sto-
chastic dependence between point processes described by conditionally independent 
intensity functions. In the same spirit, stochastic dependence between events will be at 
the core of the present paper in combination with a linear damage model in a condition 
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based maintenance context. A formal representation of a parallel renewal process is 
given in Modir et  al. (2010), whereby the authors look at the process from the point 
of view of an abstract Poisson process with state-dependent event rates, conditionally 
independent given the history of the process. Kai et al. (2014) is another example of a 
biomedical application of a parallel renewal process, whereby the individual occurrence 
rates of neural spikes depend not only on the neuron in question, but also on a set of 
neighboring neurons. A Monte-Carlo algorithm is used to construct a parallel renewal 
process based on the event rates identified.

The paper is structured as follows: The remaining sections of this chapter describe the 
process, the event rates and general modelling assumptions. Chapter 2 deals with the 
multidimensional renewal equation. After presenting the most general case with sto-
chastic dependence, the special case without stochastic dependence between processes 
is considered and an asymptotic result for the expected number of cumulated events is 
derived. We proceed to show that there is a continuous transition from the case of sto-
chastic dependence to the case of stochastic independence with one individual parame-
ter tending to zero. Chapter 3 deals with technical details of the estimation problem used 
to find the model parameters. Chapter 4 illustrates the numerical findings by means of 
an example.

Input data

The input data in the case of an event oriented data model consists, from the practical 
point of view, of a list of records, say, with each record containing a failure code, a date 
time object and some explanatory text. From the mathematical point of view, however, it 
is sufficient to

• • classify the different failure codes,
• • index each class and
• • transform each date time object into a real number representing the occurrence time 

for the respective event.

This process results in a list of occurrence times, grouped according to failure classes 
as shown:

The occurrence times will then be used to construct a joint renewal process.

The process

Let E := {1, . . . , n} be the set of all failure codes, i.e. events. Then, at each point in time 
t ∈ IR+ let Xi(t) be the backward time of event i ∈ E and define the vector of backward 
times as

(1)T =
T1,1, . . . ,T1,N1

. . . . . . . . . . . .

Tn,1, . . . ,Tn,Nn

(2)X(t) = {X1(t), . . . ,Xn(t)}T
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where

The probability for an event i ∈ E to occur in the time interval (t, t + dt) conditionally 
upon trajectory X(t) is then given by

In this equation it is assumed, that events are conditionally independent on each other, if 
the system state is given. �i(X(t)) is an event rate or an intensity function such as defined 
in Press (2007). The following stochastic differential equation can now be proven for 
X(t):

Theorem 1  Let ei, i ∈ E be the unit vector in direction i. Then the following holds:

whereby w.p. stands for “with probability”.

Proof  Each of the events i ∈ E occurs with probability �i(X(t))dt + o(dt), in which 
case all of the events except event i age by an incremental amount of time dt and the 
backward time of event i is reset to 0. No event, therefore, occurs with probability 
1−

∑
i∈E �i(X(t))dt + o(dt). More than one event occurs with probability o(dt) only. � �

The event rates

The question now is, whether a plausible functional relationship of � on the system state 
X(t) can be found such that the parameters of this function can be efficiently estimated 
from the data available and such that this relationship can be used to generate realistic 
simulations of the joint renewal process serving as a reliable short-term forecast in the 
domain of up to one week, for instance. The following assumption will be used through-
out this paper:

(6) admits the interpretation, that each event rate consists of a random compo-
nent �i and a condition or state dependent component controlled by the parameters 
αi,j , i ∈ E, j ∈ E . The state dependent component is modelled such that the event rates 
are linearly dependent on the backward times (=ages) of the events with proportionality 
factors given by αi,j , i ∈ E, j ∈ E. Therefore we sometimes refer to the process as a pro-
cess with linear damage accumulation. Figure 1 shows schematically the dependence of 
the event rates on the vector of backward time.

(3)Xi(t) = t − max
0≤ Ti,j≤t,1≤j≤Ni

{Ti,j}, i ∈ E

(4)P{Event i occurs in (t, t + dt)|X(t)} = �i(X(t))dt + o(dt)

(5)

X(t + dt) = X(t)+
∑

j �=i

∗dt ∗ ej − Xi(t) ∗ ei,w.p. (�i(X(t))dt + o(dt))

X(t + dt) = X(t)+
∑

j∈E
∗dt ∗ ej ,w.p.

(
1−

∑

i∈E
�i(X(t))dt + o(dt)

)

(6)
�i(X(t)) = �i +

∑

j∈E
αi,j ∗ Xj(t)
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Corollary 1  If the following holds

then the individual renewal processes become independent.

Proof  Using (5) and (6) one obtains for all i ∈ E

In (8) no cross-dependencies between different components of the vector X(t) can be 
observed. � �

The renewal equation
Again, please note that the input data sample or, equivalently, the trajectory (2) has been 
observed and serves as input. Also, let Ft be the sigma algebra generated by X(v), v ≤ t .

Preliminaries

Conditionally upon this trajectory the inter-event time distribution

holds. Assuming stochastic independence conditionally upon X(v)v≤t (9) immediately 
yields

(7)αi,j = 0, i ∈ E, j ∈ E, j �= i

(8)Xi(t + dt) =
{
0 w.p. �i + αiiXi(t)dt + o(dt),
Xi(t)+ dt w.p. 1− (�i + αiiXi(t)dt)+ o(dt).

(9)P{Ti ≥ u|Ft} = E


exp


−


�iu+

� t+u

t

�

j∈E
αi,jXj(v)dv




|Ft




(10)

R(t|X) := P{min
i∈E

Ti ≥ u|Ft} = E


exp


−

�

i∈E
(�iu+

� t+u

t

�

j∈E
αi,jXj(v)dv)


|Ft




Fig. 1  Vector of backward times at time t
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Define further

Accordingly, fi(t|X) ∗ dt + o(dt) is the probability for an event of type i ∈ E to occur in 
the time interval (t, t + dt) conditionally upon the trajectory X(v)v≤t. Also let Ĉ(t|X) be 
the vector of expected numbers of renewals at time t, if the process starts in state X. The 
following then holds:

Theorem 2  Let

Then

Proof  Equation (13), representing the expected number of renewals at time t under the 
condition that the process started in state X, can be conditioned upon the first occur-
rence of the event. If this occurs after time t (probability R(t|X)), then the expected 
numbers are (0, . . . , 0)T. If it occurs during the time interval [u,u+ du) somewhere in 
the interval [0,  t) and is of type i ∈ E (probability fi(u|X)du), then state X transforms 
into state X (i)(X ,u) and—therefore—the expected number, seen as a vector, is equal to 
ei + Ĉ(t − u|X (i)(X ,u)).�  �

Iterative approximation

In this section the individual components of Ĉ(t|X) will be considered one by one and 
the arguments � and α will be suppressed. Also, Ĉi(0|X) = 0 will be assumed. Then the 
individual components of equation (13) can be written as

Assume (14) has an iterative solution such that, for k = 0, 1, 2, . . .

(11)

Fi(t|X) := P{min
i∈E

Ti < u|Ft} = 1− P{min
i∈E

Ti ≥ u|Ft} =
� t

0
fi(u|X)du

fi(t|X) := R(t|X)×


�i +

�

j∈E
αi,jXj(t)




(12)
X (i)(X ,u) := X +

∑

j �=i

ej ∗ u− Xi ∗ ei, i ∈ E

(13)Ĉ(t|X) =
∑

i∈E
Fi(t|X)ei +

∑

i∈E

∫ t

0
fi(u|X)Ĉ(t − u|X (i)(X ,u))du

(14)Ĉi(t|X) = Fi(t|X)+
∑

j∈E

∫ t

0
fj(u|X)Ĉi(t − u|X (j)(X ,u))du

(15)

Ĉ
(0)
i (t|X) = Fi(t|X)

Ĉ
(k+1)
i (t|X) = Fi(t|X)+

∑

j∈E

∫ t

0
fj(u|X)Ĉ(k)

i (t − u|X (j)(X ,u))du
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Then stages (1) and (2) of the iterative approximation can be written as

(16) can be used to approximate the cumulated number of events for rare failure codes, 
and only in the near term environment. The advantage is, however, that those numbers 
take into consideration the initial condition X and therefore are in agreement with the 
requirements of “Condition Based Maintenance”. It will be shown now, that the iteration 
given in (15) converges.

Lemma 1  For any T ∈ IR+ such that

the following holds:

Proof  Let

Then from (15) one obtains

and therefore

as shown in Appendix 1, proving the lemma in the limit for k → ∞. � �

Please observe that (17) expresses the condition that the process will not “explode” at 
any time in a finite time interval.

(16)

Ĉ
(1)
i (t|X) = Fi(t|X)+

∑

j∈E

∫ t

0
fj(u|X)Fi(t − u|X (j)(X ,u))du

Ĉ
(2)
i (t|X) = Fi(t|X)+

∑

j∈E

∫ t

0
fj(u|X)Fi(t − u|X (j)(X ,u))du

+
∑

j∈E

∫ t

0
fj(u|X)

∑

k∈E

∫ t−u

0
fk(v|X (j)(X ,u))

× Fi(t − u− v|X (k)(X (j)(X ,u), v))dvdu

(17)ρ :=
∑

j∈E

∫ T

0
fj(u|X)du < 1, X ∈ IRn+

(18)lim
k→∞

||Ĉ(k+1)(t|X)− Ĉ(k)(t|X)|| = 0, 0 ≤ t ≤ T , X ∈ IRn+

(19)
D(k+1)(t|X) := Ĉ(k+1)(t|X)− Ĉ(k)(t|X), k = 0, 1, 2, 3 . . .

γk := sup
t∈[0,T ]

sup
X∈IRn+

× max
l∈E

D
(k)
l (t|X)

(20)D(k+1)(t|X) =
∫ t

0
du

∑

i∈E
fi(u|X)D(k)(t|X)

(21)||D(k+1)(t|X)|| = ρ ∗ ||D(k)(t|X)||
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A special case: stochastic independence

Assume (7) holds. Let C̃i(t) be the solution of (14) under (7). The expected cumulated 
numbers of events then become independent. For each i ∈ E the following result can be 
proven, whereby � := �i and α := αii has been set.

Corollary 2 

whereby �(x) denotes the cumulative distribution function of the standard normal 
distribution.

Proof  Note that

Let

whereby the second equation above is proven in Appendix 2.
Furthermore, defining

and making use of the Laplace transformations introduced above yields

Next, we compute Lφ(s) and Lf (s). It is easy to see that

(22)
lim
t→∞

C̃i(t) =
t

exp
(

�2

2α

)
∗
√

2π
α

∗
(
1−�

(
�√
α

)) − 1+ o(1)

(23)

C̃i(t) =
∫

t

0

(�+ αu) exp

(
−
(
�u+ α

u
2

2

))
du

+
∫

t

0

(�+ αu) exp

(
−
(
�u+ α

u
2

2

))
× Ĉi(t − u)du

(24)

φ(t) :=
∫ t

0
(�+ αu) exp

(
−
(
�u+ α

u2

2

))
du

= 1− exp

(
−
(
�t + α

t2

2

))

(25)

f (u) := (�+ αu) exp

(
−
(
�u+ α

u2

2

))

LC(s) :=
∫ ∞

0
exp(−st)C̃i(t)dt

Lφ(s) :=
∫ ∞

0
exp(−st)φ(t)dt

Lf (s) :=
∫ ∞

0
exp(−st)f (t)dt

(26)LC(s) =
Lφ(s)

1− Lf (s)

(27)Lφ(s) =
1

s
− exp

(
(�+ s)2

2α

)√
2π

α

(
1−�

(
�+ s√

α

))
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see Appendix 3. Also, Lf (s) is shown to be expressed as

as shown in Appendix 4. Now, upon using (26), (27) and (28) the following is obtained:

which yields

whereby—see Cox (1962)—O(1) is a function of s bounded as s → 0. According to Cox 
(1962), section 1.3, C̃i(t) then satisfies

� �

An equivalent proof can be obtained from one of the central results in renewal theory 
which states that

whereby T̄  is the expected renewal time, see chapter 4 in Cox (1962). By definition

Using substitutions in the style as shown above and properties of the incomplete Gamma 
function, as defined, for instance in Abramovitz and Stegun (1972), p. 262, one proves 
that

Using (32) along with (34) proves the statement.
The following conclusions are now easy to draw:

Corollary 3  If � = 0 then

(28)Lf (s) = 1− exp

(
(�+ s)2

2α

)
s

√
2π

α

(
1−�

(
�+ s√

α

))

(29)LC(s) =
1− s exp

(
(�+s)2

2α

)√
2π
α

(
1−�

(
�+s√
α

))

s2 exp
(
(�+s)2

2α

)√
2π
α

(
1−�

(
�+s√
α

))

(30)lim
s→0

LC(s) =




1

s2 exp
�

�2

2α

��
2π
α

�
1−�

�
�√
α

��


− 1

s
+ O(1)

(31)
lim
t→∞

C̃i(t) =
t

exp
(

�2

2α

)
∗
√

2π
α

∗
(
1−�

(
�√
α

)) − 1+ o(1)

(32)lim
t→∞

C̃i(t) =
t

T̄

(33)T̄ =
∫ ∞

0
t(�+ α ∗ t) exp

(
−
(
� ∗ t + α ∗ t2

2

))
dt

(34)T̄ = exp

(
�
2

2α

)
∗
√

2π

α

(
1−�

(
�√
α

))

(35)
lim
t→∞

Ĉ(t|� = 0) = 2

√
α

2π
∗ t − 1+ O(1)
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If    α = 0 then

Proof  (35) can immediately be derived from (22) by letting � tend to zero. (36) must be 
concluded from equation (23), as (22) has been derived under the implicit assumption 
that α �= 0 used in dividing the exponent by α, but the conclusion is straightforward. � �

Equation (35) has an interesting application. Assume (6) holds and, in addition � = 0 
can be safely assumed. In that case (35) allows to estimate α by equating the slope of 
Ĉ(t|α = 0) with the coefficient of t.

In the context of condition based maintenance residual lifetimes of components or 
residual forward times of critical events must be estimated conditionally upon the sys-
tem state, which frequently is expressed by parameters such as age or backward time. 
Let

be the expected forward time conditionally upon the event that the forward time exceeds 
τ. Then, in close analogy with (34), the following can be proven:

A first order correction

Let

and assume, for the sake of simplicity, αi,j ≥ 0, i ∈ E, j ∈ E, j �= i. With the definitions 
given in Appendix 5 one can show that, under (7)—i.e. stochastic independence between 
the event numbers—the renewal equation becomes

The following proposition holds:

Proposition 1 

whereby

(36)lim
t→∞

Ĉ(t|α = 0) = �t + O(1)

(37)T̄ (τ ) = E[T − τ |T ≥ τ ]

(38)T̄ (τ ) = exp

(
(�+ ατ)2

2α

)
∗
√

2π

α

(
1−�

(
�+ ατ√

α

))

(39)
ᾱ = max

i∈E

∑

j∈E,j �=i

αi,j , α̃i =
∑

j∈E
αi,j

(40)C̃(t|X) =
∑

i∈E
eiF̃i(t|X)+

∑

i∈E
ei
∑

j∈E

∫ t

0
duf̃j(u|X)C̃i(t − u|Xi(u,X))

(41)
Ĉ(t|X) = C̃(t|X)+ D(t|X)
D(t|X) = D(1)(t|X)+ D(2)(t|X)+ · · ·

(42)D(1)(t|X) =
∑

i∈E
D
(1)
i (t|X) ∗ ei
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and, approximately

as well as

In (43) T̃i is defined as in (31), however with explicit reference to a failure mode i ∈ E. 
This statement is given as a a proposition rather than as a theorem, because the behavior 
of C̃i(t|X) is used in its asymptotic approximation.

With (13), (40) and Appendix 6 one shows that

In Appendix 7 and Appendix 8 it is shown that

and this proves (43).

The estimation problem
With respect to numerical modelling the first task is the estimation of �i and 
αi,j , i ∈ E, j ∈ E from the sample in (1) by providing estimates �̂i, α̂i,j , i ∈ E, j ∈ E for the 
model parameters �i,αi,j. As usual, there are several ways to solve this task. One of them 
is the well-known maximum likelihood method, alternatively the method of moments 

(43)

|D(1)
i

(t|X)| � ᾱ ×
(
t
2

2
+ n�i

t3

6
+ nα̃i

t4

8

)

+ ᾱ

T̃i

∑

k∈E

(
t3

6
+ n�k

t4

24
+ nα̃k

t5

40

)
+ o(ᾱ)

(44)

D(2)(t|X) :=
∑

i∈E
ei
∑

k∈E

∫ t

0
du(R(u|X)(�i +

∑

j∈E
αi,j(u+ Xj))

× (Ĉi(t − u|X (k)(u,X))− C̃i(t − u|X (k)(u,X))

(45)

Ĉ(t|X)− C̃(t) =
∑

i∈E
ei(Ai + Bi)

+
∑

i∈E
ei
∑

k∈E

∫ t

0
du(R(u|X)(�i +

∑

j∈E
αi,j(u+ Xj))

× (Ĉi(t − u|X (k)(u,X))− C̃i(t − u|X (k)(u,X))

Ai :=
∫ t

0
du(R(u|X)(�i

+
∑

j∈E
αi,j(u+ Xj))− R̃(u|X)(�i + αi,iu))

Bi :=
∑

k∈E

∫ t

0
du(fk(u|X)− f̃k(u|X))

× C̃i(t − u|X (k)(u,X))

(46)

|Ai| ≤ ᾱ ∗
(
t2

2
+ n�i

t3

3
+ nα̃i

t4

8

)
+ o(ᾱ)

|Bi| �
ᾱ

T̃i

∑

k∈E

(
t3

6
+ n�k

t4

24
+ nα̃k

t5

40

)
+ o(ᾱ)



Page 11 of 18Mergenthaler et al. Decis. Anal.  (2016) 3:2 

can be used. Since (5) suggests, that the interevent time sample T is not necessarily sto-
chastically independent, the likelihood of the sample used above cannot be computed 
via the product of the likelihoods of the individual members of the sample. The method 
of moments is therefore being used. Let

be the cumulative number of events up to and including time t. Observe that the sample 
of lifetimes as introduced above is in a one-to-one correspondence with the trajectory of 
backward times as defined in (2). Let the sum of squares SSQ be defined as

whereby Ĉi(Ti,k |�̂i, α̂i,j) is the estimated cumulative number of events of type i up to and 
including time t, based on the estimates �̂i, α̂i,j. Writing

for the sake of brevity, a mathematical expression for Ĉi(Ti,k) is being needed. This 
expression is provided by means of the renewal equation.

Estimating � and α with the least squares principle

In principle, equation (48) provides the appropriate means to find optimal estima-
tors �̂i, α̂i,j , i = 1, . . . , n, j = 1, . . . , n by minimizing SSQ with respect to the estimators. 
Using (48) unchanged, however, means that during the process of minimizing SSQ—by 
means of a well-tested nonlinear numerical minimization routine—the renewal equa-
tion (13) would have to be called very often and that the full sample of observations of 
events would be ignored. Let now C̄i(t|T , �,α),Ti,k ≤ t < Ti,k+1, 1 ≤ k ≤ Ni − 1 be the 
conditional expectation of Ci(t)—conditional upon the sample (1). Also let Ui be the 
conditional time of occurrence of the next event i after Ti,k+1, conditional upon T and 
parameters � and α. Then

and

Herein the following must be observed:

and

(47)
Ci(t) :=

∑

k=1,...,Ni

1{Ti,k≤t}

(48)
SSQ =

∑

i∈E

∑

k=1,...,Ni

(Ci(Ti,k)− Ĉi(Ti,k |�̂i, α̂i,j))2

(49)Ĉi(Ti,k) = Ĉi(Ti,k |�̂i, α̂ij)

(50)C̄i(t|T , �,α) = k , if t = Ti,k for some k = 1, . . .Ni

(51)

C̄i(t|T , �,α) = k − 1+
∫

t

Ti,k−1

P{Ui ≥ u|T , �,α}�i(u|T , �,α)du,

Ti,k−1 ≤ t < Ti,k

(52)
�i(u|T , �,α) = �i +

∑

j∈E,j �=i

αi,jXj(Ti,k−1 + u)+ αi,iu,Ti,k−1 ≤ u < Ti,k

(53)P{Ui ≥ u|T , �,α} = 1,Ti,k ≤ u < Ti,k+1 by definition
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With (53) the estimation problem requires minimizing ŜSQ, which is the sum of squares 
of the deviations between the estimated numbers of cumulated events—observed and 
estimated, respectively—with respect to � andα, i.e.

where (52) and (53) have been used.

Functional equations

Observing that (54) is of second order in the decision variables and that eventually posi-
tivity constraints must be satisfied, the appropriate technique to minimize (54) involves a 
nonlinear minimization algorithm. A powerful representative of this type of techniques 
is the Fletcher-Reeves-Polak-Ribiere (FRPR) algorithm, see Press (2007), for instance. 
Optimal estimators with respect to the quantities (�,α) = (�i,αi,j , i ∈ E, j ∈ E) according 
to the method of moments are obtained by

• • Differentiating (54) with respect to � andαi,j , i ∈ E, j ∈ E

• • Setting the results equal to zero and
• • Solving the resulting system of equations

Preparing the Numerical Solution

(55), when used in a minimization routine such as the FRPR method, may result in 
negative values for �i and αi,j , i ∈ E, j ∈ E. Both are undesirable effects. Negative val-
ues for �i would imply negative random components of the event rates, negative values 
for αi,j , i ∈ E, j ∈ E would imply an unlikely healing effect, whereby the occurrence of 
events becomes less likely, the longer the backward time is. While this assumption is not 
entirely unlikely, it is not going to be considered any further in this paper.

Therefore, defining an array pi through the correspondence

(54) can be written as

Differentiating (54) with respect to �i andαi,j , i ∈ E, j ∈ E is now replaced by differenti-
ating (55) with respect to pi,0, . . . , pi,1+n, and yields the following nonlinear system of 
equations:

(54)

ŜSQ =
∑

i∈E

∑

k=1,...,Ni

(1− [�i(Ti,k − Ti,k−1)

+
∑

j �=i

αi,j

∫ Ti,k

Ti,k−1

Xj(Ti,k−1 + u)du+ (1/2)αi,i(Ti,k − Ti,k−1)])2

�i ⇒ p2i,0,αi,1 ⇒ p2i,1, . . . ,αi,n ⇒ p2i,1+n

(55)

ŜSQ =
∑

i=1,...,n

∑

k=1,...,Ni

(1− [p2i,0(Ti,k − Ti,k−1)+ p2i,1+i(Ti,k − Ti,k−1)
2/2

+
∑

j �=i

p2i,1+j

∫ Ti,k

Ti,k−1

Xj(Ti,k−1 + u)du])2
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with

Example
The problem at hand has its origins in monitoring trains in the German railroad indus-
try. There is an abundance of historical data, however, some or most of it is discrete, 
event based material. Only slowly sensor data becomes available, less so because of tech-
nical reasons, but mostly due to the architectural database design complexity. This is 
why, parallel to stochastic time series analysis as used in evaluating sensor data, a math-
ematical model is needed to deal with event based data.

Figures 2 and 3 in Appendix 9 give two examples of approximating a cumulated event 
curve with an event rate model as given by (6). Both figures show the typical behaviour 
of this model in as far as the event rate grows quadratically with the backward time. This 
behaviour becomes very marked, when long backward times are observed. In a simulation 
context, this is not a critical phenomenon, because quadratically increasing failure rates 
make sure that untypically long interevent times become unlikely. Figure 3 also shows 
some typical behaviour of the model used: If there is enough structure in the time series 
and enough events, i.e. short backward times, then the model approximates the staircase 
structure represented by the cumulated event numbers to a sufficient degree of precision. 
As soon as backward times become long, event rates become prohibitively large. In Fig. 2 
the following parameters have been used:n = 10, �i = 0.0001+ 0.0001 ∗ Z α[i − 1, i] = 
 0.00001,α[i, i] = 0.00001,α[i, i + 1] = 0.00001,α[i, i + 2] = 0.00001 . Figure  3 contains 
the approximation result of yet another example, whereby n = 10, �i = 0.0005+ 0.0005 ∗ Z 
α[i − 1, i] = 0.0001,α[i, i] = 0.0002,α[i, i + 1] = 0.0001,α[i, i + 2] = 0.000001.

In both figures Z is a uniformly distributed random variable between 0 and 1. Please 
note the “quadratically explosive” nature of the expected cumulated event function with 
increasing backward times in Fig. 3.

(56)
∂ ŜSQ

∂pi,0
=− 2pi,0

∑

k=1,...,Ni

hi,k(Ti,k − Ti,k−1)

(57)
∂ ŜSQ

∂pi,1+i
=− 2pi,1+i

∑

k=1,...,Ni

hi,k
(Ti,k − Ti,k−1)

2

2

(58)
∂ ŜSQ

∂pi,1+j
=− 2pi,1+j

∑

k=1,...,Ni

hi,k

∫ Ti,k

Ti,k−1

Xj(Ti,k−1 + u)du, j �= i

(59)

hi,k =
{
1−

[
p2i,0(Ti,k − Ti,k−1)+

p2i,1+i(Ti,k − Ti,k−1)
2

2

+
∑

j �=i

p2i,1+j

∫ Ti,k

Ti,k−1

Xj(Ti,k−1 + u)du

]}
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Appendix
Appendix 1

One can prove that

and, upon using (17) and (19) this yields γ 2
k+1 ≤ γ 2

k ∗ ρ2, or, equivalently γk+1 ≤ γk ∗ ρ.

Appendix 2

Using the substitution w := �u+ α u2

2 , dw
du

= �+ αu, u = 0 ⇒ w = 0, u = t ⇒ w = 
�t + α t

2

2
 one obtains

Appendix 3

Use the substitution v = √
αt + �+s√

α
, dv = √

αdt, t = 0 ⇒ v = �+s√
α

, t = ∞ ⇒ v = ∞.

Appendix 4

The following holds:

with

Equations (63) can be shown to be equivalent to

Inserting (64) into (62) yields the statement.

(60)

||D(k+1)(t|X)|| =
∫ t

0
du

∑

i∈E

∫ t

0
dv

∑

j∈E
fi(u|X)× fj(v|X)

×
∑

l∈E
D
(k)
l (t − u|X (i)(X ,u))D

(k)
l (t − v|X (j)(X , v)))

(61)φ(t) =
∫

�t+α t2

2

0
dw exp(−w) = 1− exp

(
−
(
�t + α

t2

2

))

(62)Lf (s) = exp

(
(�+ s)2

2α

)
(�I1 + αI2)

(63)

I1 =
∫ ∞

0
exp

(
−1

2

(√
αt + �+ s√

α

)2
)
dt

I2 =
∫ ∞

0
t exp

(
−1

2

(√
αt + �+ s√

α

)2
)
dt

(64)

I1 =
√

2π

α

(
1−�

(
�+ s√

α

))

I2 =
1

α
exp

(
−
(
(�+ s)2

2α

))
− (�+ s)

α

√
2π

α

(
1−�

(
�+ s√

α

))
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Appendix 5

Appendix 6

Defining

one proves

which is equivalent to (43).

Appendix 7

(65)

fi(t|X) = R(t|X)


�i +

�

j∈E
αi,j(u+ Xi)




R(t|X) = exp


−

�

k∈E


�k t +

�

j∈E
αk ,j

(t + Xj)
2

2






Fi(t|X) =
� t

0
fi(u|X)du

f̃i(t|X) = R̃(t|X)(�i + αi,i(t + Xi))

R̃(t|X) = exp

�
−
�
�it + αi,i

t2

2

��

F̃i(t) =
� t

0
fi(u)du

(66)ri :=
� t

0


R(u|X)


�i +

�

j∈E
αi,j(u+ Xj)


− R̃(u|X)

�
�i + αi,i(u+ Xi)

�



(67)ti :=
�

k∈E

� t

0
duR(u|X)


�k +

�

j∈E
αk ,j(u+ Xj)


(Ĉi(t − u|X (k)(u,X))

(68)

wi :=
�

k∈E

� t

0

du


R(u,X)


�k +

�

j∈E
αk ,j(u+ Xj)




− R̃(u,X)(�k + αk ,k(u+ Xk))× C̃i(t − u|X (k)(u,X))




(69)Ĉ(t|X)−C̃(t) =
∑

i∈E
ei[ri + ti + wi]

(70)

Ai =
� t

0

du exp

�
−
�

k∈E

�
�ku+ αk ,k

(u+ Xk)
2

2

�

×


exp


−

�

k∈E

�

j∈E,j �=k

αk ,j
(u+ Xj)

2

2




�i +

�

j∈E
αi,j(u+ Xj)




− (�i + αi,i(u+ Xi))

�
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Now, for the sake of simplicity, let Xj = 0, j ∈ E. This yields

Therefore

Appendix 8

Again, by letting Xl = 0, l ∈ E one obtains , after some regrouping

Therefore

(71)

Ai =
� t

0

exp

�
−
�

k∈E

�
�ku+ αk ,k

u2

2

��
 �

j∈E,j �=i

αi,ju

−
�

k∈E

�

j∈E,j �=k

αk ,j

�
�i
u2

2
+ α̃i

u3

2

�
+ o(ᾱ)

(72)

|Ai| ≤ ᾱ

∫ t

0
udu+ n

�i

2

∫ t

0
u2du+ n

ᾱ

2
α̃i

∫ t

0
u3du+ o(ᾱ)

= ᾱ

(
t2

2
+ n�i

t3

6
+ nα̃i

t4

8

)
+ o(ᾱ)

(73)

fk(u|X)− f̃k(u,X) = exp

�
−
�

l∈E

�
�lu+ αl,l

u2

2

��
 �

j∈E,j �=k

αk ,ju

− �k

�

l∈E

�

j∈E,j �=l

αl,j
u2

2
−

�

j∈E
αk ,j

�

j∈E,j �=l

αl,j
u3

2


+ o(ᾱ)

(74)

|Bi| ≤
∑

k∈E

∫ t

0
du

(
ᾱu+ n�k ᾱ

u2

2
+ nα̃k ∗ ᾱ ∗ u3

2

)
C̃i(t − u|X (k)(u,X))+ o(ᾱ)

� ᾱ
∑

k∈E

∫ t

0
du

(
u+ n�k

u2

2
+ nα̃k

u3

3

)
t − u

T̃i

+ o(ᾱ)

= ᾱ

T̃i

∑

k∈E

(
t3

6
+ n�k

t4

24
+ nα̃k

t5

40

)
+ o(ᾱ)
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Appendix 9: Figures

Conclusions
This paper deals with a joint renewal process, whose component processes are coupled 
via failure rates depending linearly on the vector of backward times. It is shown such 
such a process can be described by a multidimensional renewal equation. In the case 
of stochastic independence an asymptotic approximation for the limiting cumulative 
number of events is derived. It is also shown, how the component processes become 
independent with one single quantity tending to zero. The model parameters can be esti-
mated using the least squares principle. In order to prevent parameters such as rates and 
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Fig. 2  Approximating cumulated event numbers through a linear damage model
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Fig. 3  Approximating cumulated event numbers through a linear damage model
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damage parameters from becoming negative, one can temporarily use the squares of the 
parameters as the decision variables in the least squares functional equations. A numeri-
cal example shows how the cumulative number of events is approximated by a continu-
ous function.

The vector of backward times is by no means the only possible state variable to be used 
in a linear model. Rather, any statistic can be used, such as, for instance, the sliding aver-
age of the cumulated event numbers over a given embedding window.
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