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Abstract

Increase in the number of documents in the corpuses like News groups,
government organizations, internet and digital libraries, have led to greater
complexity in categorizing and retrieving them. Incorporating semantic features will
improve the accuracy of retrieving documents through the method of clustering
and which will also pave the way to organize and retrieve the documents more
efficiently, from the large available corpuses. Even though clustering based on
semantics enhances the quality of clusters, scalability of the system still remains
complicated. In this paper, three dynamic document clustering algorithms, namely:
Term frequency based MAximum Resemblance Document Clustering (TMARDC),
Correlated Concept based MAximum Resemblance Document Clustering
(CCMARDC) and Correlated Concept based Fast Incremental Clustering Algorithm
(CCFICA) are proposed. From the above three proposed algorithms the TMARDC
algorithm is based on term frequency, whereas, the CCMARDC and CCFICA are
based on Correlated terms (Terms and their Related terms) concept extraction
algorithm. The proposed algorithms were compared with the existing static and
dynamic document clustering algorithms by conducting experimental analysis on
the dataset chosen from 20Newsgroups and scientific literature. F-measure and
Purity have been considered as metrics for evaluating the performance of the
algorithms. The experimental results demonstrate that the proposed algorithm
exhibit better performance, compared to the four existing algorithms for document
clustering.

Keywords: Static and dynamic document clustering; MAximum resemblance data
labeling (MARDL) technique; Term frequency; Inverse document frequency (TFIDF);
Concepts; Semantic similarity
Background
Tremendous growth in the volume of text documents available from various sources

like the Internet, digital libraries, news sources, and company-wide intranets has led to

an increased interest in developing methods that can help users to effectively navigate,

summarize, and organize information, with an ultimate goal of helping the users to

find what they are looking for. In this context, fast and high-quality document clustering

algorithms play an important role, as they have shown to provide both an intuitive

navigation/browsing mechanism, by organizing large amounts of information into a
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small number of meaningful clusters, as well as to greatly improve the retrieval

performance either by cluster-driven dimensionality reduction, term-weighting Tang

et al. (2005), or by query expansion Sammut and Webb (2010). As today’s search

engine does just string matching, documents retrieved may not be so relevant to

the user’s query. Thus, a good document clustering approach if available and imple-

mented will assist in organizing the document corpus automatically into a meaningful

cluster hierarchy for efficient browsing and navigation. Further, it will also help to

overcome the inherent deficiencies associated with traditional information retrieval

methods.

Document clustering has been investigated for use in a number of different areas of

text mining and information retrieval. Initially, document clustering was investigated

for improving the precision or recall in information retrieval systems and as an efficient

way of finding the nearest neighbors of a document Van Rijsbergen (1989 and Kowalski

and Maybury 2002, Buckley and Lewit 1985). Then clustering was used in browsing a

collection of documents or in organizing the results returned by a search engine in

response to a user’s query Cutting et al. (1992; Zamir et al. 1997). Document clustering

was also been used to automatically generate hierarchical clusters of documents Steinbach

et al. (2000). For example, a web search engine often returns thousands of pages in

response to a broad query, making it difficult for users to browse or to identify relevant

information.

Clustering methods can be used to automatically group the retrieved documents

into a list of meaningful categories, as is achieved by Enterprise Search engines such

as: Northern Light and Vivisimo Andrews and Fox (2007). However, in this case scal-

ability becomes a big issue as the number of documents increases day-by-day,

thereby necessitating the need to cluster documents dynamically, without disturbing

the formulated clusters. By clustering documents dynamically, the time and effort

taken for clustering is drastically reduced, as dynamic algorithms processes the new

document and assigns it into the meaningful clusters directly, instead of re-clustering

the entire document in the corpus. Though some document clustering methods exist

for clustering documents in a dynamic environment which are based on terms Wang

et al. (2011) or Synonyms and Hypernyms Nadig et al. (2008), they are not best suited

for documents that are technically related. To overcome to above limitations, a model

for dynamic document clustering based on Term frequency and Correlated Terms

(Terms and their related terms) as concepts in Scientific literature and Newsgroups

data set, is proposed in this paper. The three new algorithms, namely, Term frequency

based MAximum Resemblance Document Clustering (TMARDC), Correlated Concept

based MAximum Resemblance Document Clustering (CCMARDC) and Correlated

Concept based Fast Incremental Clustering Algorithm (CCFICA) are proposed and the

performance of the above have been compared with four existing algorithms, namely,

Semantic Similarity based Histogram based Incremental Document Clustering (SHC),

Concept-Based Mining Model (CBM), Incremental Algorithm for Clustering Search

Results (ICA) and Enhanced Similarity Histogram Clustering using Intra Centroid

Vector Similarity (ESHC-IntraCVS) on the same datasets, and results are presented.

The remaining part of this paper is organized as follows. Section “Related work” reviews

related work on static and dynamic document clustering. Section “Overview of existing

document clustering considered for comparative analysis”, outlines the general model for
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dynamic document clustering, also, the need for considering correlated terms are briefly

stated in that section. In section 4 presents, the new clustering algorithms, namely,

TMARDC, CCMARDC and CCFICA clustering algorithms have been described in

detail. In Section 5, the experimental setup and data set descriptions have been discussed,

followed by analysis of results. Finally salient conclusions are presented in section

“Experimental results”.
Methods
We have conducted systematic and structured reviews to identify the issues in the

existing dynamic document clustering algorithms. To overcome the issues in the exit-

ing work, three algorithms namely Term frequency based MAximum Resemblance

Document Clustering (TMARDC), Correlated Concept based MAximum Resemblance

Document Clustering (CCMARDC) and Correlated Concept based Fast Incremental

Clustering Algorithm (CCFICA) have been proposed. To justify the potential of the

proposed algorithm experiments are conducted on two dataset. The performance of

the proposed algorithm shows better results compared to the existing algorithm.
Related works

Most of the existing document clustering methods are based on the Vector Space Model

(VSM) which is a widely used data representation for text classification and clustering

Aas and Eikvil (1999). In VSM the document is represented as a feature vector of the

terms in the document. Each feature vector contains term-weights of the terms in the

document. Term Frequency–Inverse Document Frequency (TF-IDF) is a weight used

which is a statistical measure, is used as a weight to evaluate ‘how important a word is’ to

a document in a collection or corpus Salton and Buckley (1998). The importance

increases proportionally to the number of times a word appears in the document, but is

offset by the frequency of the word in the corpus. The similarity between the documents

is measured by one of several similarity measures that are based on such a feature vector

Huang (2008). Common ones include the cosine measure and the Jaccard measure.

Li and Zhu (2011) proposed a new method for Document Clustering in Research

Literature, based on Negative Matrix Factorization (NMF) and topic discovery based

on Test or theory. This method, clusters research literature documents comprising

NMF and Test or theory. The NMF method is most prominent for high dimensionality

reduction in text data and clustering them. Test or theory is used to discover topics

for the documents clustered by the NMF method, by constructing learning matrix and

comparison matrix. Using the above, a case study has been provided for the automatic

classification of conference proceedings in Chinese. The combination of NMF and

Test or theory provides effective results. Many document clustering algorithms are

based on term frequency Kumar and Srinathan (2009; Luo et al. 2009; Ni et al. 2010).

Several researchers have proposed clustering based on synonyms and hypernyms

Bharathi and Vengatesan (2012; Pessiot et al. 2010; Li et al. 2008; Danushka et al.

2011; Kaiser et al. 2009; Shehata 2010; Baghel and Dhir 2010). An overview of a recent

survey of existing dynamic document clustering algorithms, along with the details of

document representation, similarity measure and the dataset used for experimental

analysis, are presented in Table 1.



Table 1 Survey of recent document clustering algorithms

Algorithm name with author(s) Technical abbreviation Representation Similarity measure Data set used

Threshold Resilient Online Algorithm
Chou and Chen (2008)

IPLSI(Incremental Probabilistic Latent
Semantic Indexing)

Latent Semantic Variables A latent variable is introduced between
documents and terms, Cosine function

NIST TDT Corpora

Efficient Phrase Based Indexing Hammouda
and Kamel (2004)

Uses DIG(Document Index Graph) for
Web Clustering

Document Index Graph
(Phrase Based Representation)

Phrase Based Similarity measure USENET News Groups

Component-Based Clustering Algorithms
Boris et al. (2012)

IR(Initial Representative), MD(Measure
Distance), UR(Update Representatives),
EC(Evaluate Clusters), SC(Stop Criterion)

Object-Based Software
Representation

CITY,CORREL, COSINE, ELUCID 10 UCI Datasets

Temporal Queries and Version Management
Zaniolo and Wang (2008)

XML Techniques V-Document (XML Document) —— W3C, World Fact Book

Density –Based Methods for Hierarchical
Clustering Chehreghani and Abolhassani
(2008)

3-Phases: Insertion Phase, Extraction
Phase, Combination Phase

M-Tree Structure Relative distance between objects DMOZ, NEWS, REUTERS

XML Schema Matching Algorithm
Alsayed et al. (2009)

NPS(Number Prufer Sequences), LPS(Label
Prufer Sequences)

Prufer Sequences, Schema Trees The distance between two nodes in
the schema tree

XCBL, OAGIS

Novel Web User Clustering Method
Ling et al. (2009)

A 3Phase COWES Algorithm A Web Session Subtree DoC(Degree of Change), FoC(Frequency of
Change) and SoC(Significance of Change)

Internet Traffic Archive

Multi-label Document Clustering Algorithm
Chen et al. (2010)

FMDC(Fuzzy Based Multi-label Document
Clustering) – Fuzzy Association Rule + Existing
Ontology

Terms and Hypernyms Representation
of documents

Membership Functions and Document
Term Matrix

Classic, Re0, R8, and WebKB

Incremental Construction of Multilingual
Topic Maps Ellouze et al. (2012)

CITOM(Construction Incremental Topic Map) Topic Map Model Representation Topic Map Pruning Process Multilingual corpora

Feature Extraction Algorithm
Yan et al. (2011)

TOFA(Trace-Oriented Feature Analysis) Bag Of Words Model(BOW) Latent Semantic Indexing(LSI) 20NG, RVCI, ODP

Correlation Similarity Measure Space
Zhang et al. (2011)

CPI(Correlation Preserving Index) Terms and related terms Correlation similarity 20NG

Contextual Document Cluster
Rooney et al. (2006)

CDC(Contextual Document Cluster) Term Document Representation Adjacent Document Similarity RCVI

Framework of Wikipedia-Based
Clustering Hu et al. (2009)

Exact-match and Relatedness-match Concept feature vector and Category
feature vector

Complete Linkage as cluster distance
measure

20-newsgroup, TDT2, LA
Times
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Critical analysis of the recent document clustering algorithms, as presented in Table 1

reveals that document are represented (i) based on phrase or pair-wise concept, where

in the similarity relationship between the sentences are identified as used Hammouda

and Kamel (2004; Lam and Hwuang 2009); (ii) using tree representation and similarity

between two objects or nodes are identified and clustered Zaniolo and Wang (2008;

Chehreghani and Abolhassani 2008; Alsayed et al. 2009); (iii) component based clustering

algorithm which makes use of object – based software representation for modeling the

document and cosine and Euclid measure for document clustering Boris et al. (2012); (iv)

identifying the semantic relations and representing the documents based on Terms and

Related terms Zhang et al. (2011); (v) as concept and feature vector Hu et al. (2009). Most

of the above works are based on web page information representation, tracking and

retrieval.

Prathima and Supreethi (2011) presented a survey of concept based clustering algorithms,

and concluded that most of the clustering techniques use TF-IDF method. This method

has the following issues:

� It fails to differentiate the degree of semantic importance of each term;

� It assign weights without distinguishing between semantically important and

unimportant words within the document and

� It does not consider synonyms, polysemous, etc.

Based on the critical analysis of published literature, it is inferred that more than

60% of clustering techniques is based on term frequencies. About 30% of clustering

techniques and annotation tools use synonyms and hypernyms for predicting the

concepts. Moreover, the synonyms and Hypernyms are extracted by means of WordNet

lexical database Miller (1995). Since scientific literature and many tracks of news

documents consist of purely domain-specific technical terms, the performance of

synonyms and hypernyms based clustering may not always yield better results. In order to

enhance the quality of the cluster for the above mentioned document sets, the focus of

the present study is on clustering the document based on terms and their technically

related terms. In this regard, a domain- specific dictionary has been developed by the

authors to extract the related terms as concepts.

Overview of existing document clustering considered for comparative analysis

Three existing algorithms that have been chosen for the comparative analysis (with that

of the proposed algorithms) are briefly described below.

Semantic similarity histogram based incremental document clustering (SHC) algorithm

Gad and Kamel (2010) proposed an incremental clustering algorithm based on Phrase-

Semantic Similarity Histogram (PSSM). This algorithm integrates the text semantic

to the incremental clustering process. The clusters are represented using semantic

histogram which measures the distribution of semantic similarities within each clus-

ter. The PSSM which is based on single word analysis and phrase analysis, assigns

and adjusts the term weight (word/phrase) based on its relationships with seman-

tically similar terms that occur together in the document. As soon as the new

document is incrementally added to the cluster, the semantic histogram ratio is
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calculated and the insertion order problem is addressed by making bad documents

that reduce the cluster cohesiveness to leave, and reassign them to a more appropriate

cluster.

Enhanced similarity histogram clustering using intra centroid vector similarity (ESHC-intra CVS)

algorithm

Gavin and Yue (2009) proposed an enhanced incremental clustering approach to

develop a better clustering algorithm that helps to organize the information available

on the internet in an incremental fashion in a better way. This enhanced algorithm

works with the idea that the cluster that contains a large number of similar documents

to the current document being clustered will have a centroid vector that has a high

similarity to the current document. Therefore, the cluster whose centroid vector is

most similar to the document’s vector representation is the one that most likely to

contain the maximum number of documents that are more similar to the current

document. Adding the new document to this cluster (when possible) will probably give

the greatest benefit to that cluster and the entire dataset. This approach uses the same

pair-wise document similarity representation and distribution approach and also uses

additional information about the cluster to determine the best cluster to place the new

document.

Concept-based mining model (CBM)

Shehata et al. (2010) proposed a Concept- based Mining Model for Enhancing Text

Clustering Mining model. The proposed concept-based mining model consists of

sentence-based concept analysis, document-based concept analysis, corpus-based

concept-analysis, and concept-based similarity measure. By combining the factors af-

fecting the weights of concepts on the sentence, document, and corpus levels, a

concept-based similarity measure that is capable of accurate calculation of pair-wise

documents, is formulated. This allows performing concept matching and concept-

based similarity calculations among documents in an accurate way. The quality of text

clustering achieved by this model significantly surpasses the traditional single term-

based approaches like: (i) Hierarchical Agglomerative Clustering (HAC), (ii) Single-Pass

Clustering, and (iii) k-Nearest Neighbor (k-NN).

An incremental algorithm for clustering search results (ICA)

Liu et al. (2008) proposed an incremental clustering algorithm based on Cluster

Average Similarity Area (CASA), which was used to score the degree of coherency

of a cluster. The cohesiveness quality information of a cluster was computed

based on its CASA. The above algorithm works by processing data objects one at

a time, incrementally assigning data objects to their respective clusters while they

progress.
A model for dynamic document clustering

Figure 1 shows the sequence of steps involved in dynamic document clustering. The

document which is in unstructured format are preprocessed and converted to a struc-

tured format. The details of each module involved in the model namely, preprocessing,

static clustering and dynamic document clustering are discussed below.



Figure 1 A general model for dynamic document clustering.
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Preprocessing

Preprocessing involves: tokenization, removing stopwords and stemming.

Tokenization (Christopher et. al. http://nlp.stanford.edu/software/tokenizer.shtml), is

the process of splitting the sentences into separate tokens. For example, “this is a paper

about document clustering” is split as: this\is\paper\about\document\clustering. Stop

words are frequently occurring words that have little or no discriminating power, such

as: \a", \about", \all", etc., or other domain-dependent words. Stop words are often re-

moved. Stemming is the process of removing the affixes in the words and producing

the root word known as the stem Frakes and Fox (2003). Typically; the stemming

process is performed to transform the words into their root form. For example: con-

nected, connecting and connection would be transformed into ‘connect’. Most widely

used stemming algorithms are the ones proposed by Porter (1998), Lovins (1968), and

S-removal Harman (1991).

Static document clustering

The processed documents are clustered using a Bisecting K-means clustering algo-

rithm in order to group similar documents. Cluster analysis or clustering is the

assignment of a set of observations into subsets (called clusters) so that observa-

tions of the same cluster are similar in some sense. The Bisecting K-means method

will split a large cluster into two sub-clusters and this step will be repeated for

several times, until the K numbers of clusters are formed with high similarity

Steinbach et al. (2000).

Dynamic document clustering

Dynamic Document Clustering is the process of inserting the newly arrived documents

to the appropriate existing cluster such that the formulated cluster will have a high

intra- cluster similarity, and less inter-cluster similarity. At first the new documents are

preprocessed and then it is clustered based on the dynamic technique. The issues that

are to be addressed are:

http://nlp.stanford.edu/software/tokenizer.shtml
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� Effectiveness: How accurately the newly arrived documents are inserted to the

existing clusters.

� Insertion Order Issue: Pattern of arrival of new documents should not affect the

correctness of the clusters.

The new documents are assigned to the existing cluster, one by one in recursive

steps. The new documents are assigned to a cluster dynamically at run time with-

out the need for re-clustering. As a result the existing clusters are updated and the

final clusters are obtained. In this study, the three newly proposed algorithms

TMARDC, CCMARDC and CCFICA are experimented for clustering the docu-

ments dynamically. The details of these three algorithms are discussed in the next

section.
Proposed algorithms for dynamic document clustering

This section describes the proposed Term frequency based MAximum Resem-

blance Document Clustering (TMARDC) algorithm, Correlated Concept based

MAximum Resemblance Document Clustering (CCMARDC) algorithm, and Corre-

lated Concept based Fast Incremental Clustering Algorithm (CCFICA) for dynamic

clustering.
Term frequency based maximum resemblance document clustering (TMARDC)

This algorithm adopts the core concept of MARDL i.e. Maximum Resemblance tech-

nique Chen et al. (2008). This algorithm is purely based on a bag of words representa-

tion. This dynamic algorithm starts with the set of clusters which is obtained as the

result of bisecting K-Means clustering. Initially, the sample set is constructed for each

cluster set. One third of the documents are chosen randomly as samples from the set

of documents in each cluster. The samples chosen should be unique and should not be

replica’s of documents in samples. The new documents are preprocessed first which in-

cludes stop word removal process and stemming process. The new documents are

stemmed using a stemming algorithm. After preprocessing of the new document, the

new document is compared with samples based on Sentence Importance computation

(SIC), Cluster set Importance computation (CIC) and the influence of the new docu-

ment in each cluster termed as Frequency Value (FV) is calculated. The CIC should be

normalized to obtain the FV, because the number of documents in each sample may

vary.

Then the dynamic algorithm assigns the new document to the cluster with the

high FV, provided, the FV is within the threshold value. The threshold value is

maintained for clustering process to make a document to form a new cluster or

assigning a document to the appropriate cluster. If all the clusters result in FV less

than the threshold value, then, the new document forms a separate cluster. The

threshold value is calculated through a series of experiments on all worst, average

and best case inputs and it is termed as Threshold value (Tmax). A newly arrived

document, if it’s FV falls less than the Tmax it forms a separate cluster, thus ensur-

ing that no document goes without clustering, even it doesn’t patches with any of

the existing clusters.
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Algorithm TMARDC
Correlated concept based maximum resemblance document clustering (CCMARDC)

Incorporation of semantic features, improve the quality of document clustering and

also the accuracy of information extraction techniques. In this study, concept extrac-

tion algorithm introduced by Jayabharathy et al. (2011), which itself is a modification

of the existing semantic-based model proposed by Shehata (2009) has been adopted.

The model proposed by Shehata (2009) aims to cluster documents by meaning. The

semantic-based similarity measure is used for the two CCMARDC and CCFICA

algorithms, proposed in this study. In order to extract concepts, a domain-specific

dictionary consisting of scientific terms and terms related to newsgroup tracks are

created unlike the work of Shehata (2009), where in Word Net lexical database Miller

(1995) was used for Synonyms/Hypernyms extraction. Domain-specific dictionary for

scientific and Newsgroups are used for concept extraction, as it eliminates the need
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for word sense disambiguation (WSD) Banerjee and Pedersen (2002; http://en.wiki-

pedia.org/wiki/Word_sense_disambiguation), which is not the scope of the present

study.

Why correlated terms?

There are many existing clustering algorithms that take synonyms and hypernyms

for vector representation. In this study, the authors have considered crtv as concepts

for clustering to improve the efficiency of clustering the documents both statically

and dynamically. The idea of considering terms and related terms as concepts based

on semantic similarity has been carried out for extracting topic from the clustered

documents Jayabharathy et al. (2011). The proposed technique CCMARDC takes this

idea of considering crtv as concepts for static clustering and applies the same concept for

clustering the document dynamically. Considering terms or synonyms and hypernyms

for information extraction leads the following issues:

Case 1: Words have multiple meanings, hence diversifies the information extraction.

E.g. Bat : represents the cricket bat or a kind of a bird.

Case 2: Considering terms or synonyms of the terms limits the search space of the

domain.

E.g. wireless: first sense medium of communication.

Similarly, synonyms of the term “wireless” is extracted from WordNet as: “first sense

medium of communication”, whereas, taking related terms like “wireless”, “communica-

tion”, “protocol” “mobile communication” etc. will be extracted as concepts, which gives

better accuracy and improves the efficiency of information extraction. For example,

sports article contains terms like: a ball, bat, wicket, run, batsman, over etc. Taking

synonyms/hypernyms as concept, will not give better performance since the meaning

of these terms are not literally same. If we consider the technically related terms i.e.

crtv, all the above mentioned terms will be grouped together as a single concept

which refers sports related to the concept – cricket. Similarly the synonym for the

term “farmer” from WordNet is extracted as: “a person Title who operates a farm”.

But using the proposed model the concept will be extracted as “farmer”, “crops”,

“fertilizer”, “land” and “farm”. Clustering the document using this extraction procedure

would improve the performance of the resulting cluster, than that of the cluster generated

by existing works.

Concept extraction algorithm: description

Considering the extraction of Synonyms/Hypernyms as concepts degrades the efficiency

of the results in the case of scientific literature and news group dataset because of

the fact that the documents speak more about scientific or technical terms. Concept

extraction is based on our previous work Jayabharathy et al. (2011), where Correlated

concepts are nothing but the terms and their related terms. For Concept extraction,

domain specific dictionary is used where terms related to each domain is kept along

with the meaning of the term. For e.g. the terms A and B are taken as a concept; if

term A is in the definition of term B or vice versa combines A and B as a single concept

else add the definition of A and B as separate concept to the concept list. E.g. Considering

http://en.wikipedia.org/wiki/Word_sense_disambiguation
http://en.wikipedia.org/wiki/Word_sense_disambiguation
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share market as the term in the news documents, the related terms are share, shareholder,

money, market. The documents containing these words are grouped together as share

market which forms the cluster.

The framework of the proposed correlated concept based maximum resemblance document

clustering (CCMARDC)

The Figure 2 illustrates the processes involved in the proposed Correlated Concept

based MAximum Document clustering (CCMARDC). This algorithm is similar to

the TMARDC algorithm, the main difference is that the documents are represented

as correlated concepts for clustering instead of term frequency. In addition, a new

module is integrated, which is meant for concept extraction and interaction with

domain-specific dictionary. Not only that, instead of computing the sentence

similarity between the new document and documents in the sample set, the

semantic similarity between the new document and the document(s) in the sam-

ple set Si is computed. The above mentioned process of TMARDC algorithm is

repeated for clustering process and for inclusion of new document based on correlated

concept.

Similarity measure

The semantic-based similarity between two documents d1 and d2 is calculated. This

similarity measure is a function of the following factors Shehata (2009):

� The number of matching concepts, (mc), in each document (d);

� The total number of the labeled verb-argument structures (v), in each sentence

(st);
Figure 2 Correlated concept based MAximum resemblance document clustering.
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� The ctfi of each concept ci in st for each document d, where i = 1, 2, …, mc and

� The c fi of each concept ci in each document d, where i = 1, 2, …, mc

sims docp; dj
� � ¼

Xmc

i−1
weighti1 �weighti2 ð5Þ

weighti ¼ cf weighti þ ctf weighti ð6Þ

cf weighti ¼ cf ij=
Xcn

j¼1
cf ij
� �2�1

2=
�

ð7Þ

ctf weighti ¼ ct f ij=
Xcn

j−1
ct f ij
� �2 �1

2=
�

ð8Þ

Where cn is the total number of concepts which have a conceptual term frequency
value in document d.

Algorithm CCMARDC
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Correlated concept based fast incremental clustering algorithm (CCFICA)

Xiaoke et al. (2009) proposed Fast Incremental Clustering Algorithm (FICA) an increment

data clustering algorithm for mushroom data set. The main objective of this algorithm is

to cluster the categorical data into the K number of clusters using incremental method.

The existing algorithm uses dissimilarity measure for finding the distance between the

new object and the existing cluster. The core idea of the above algorithm is considered

in the CCFICA proposed here. The FICA algorithm is modified for clustering the docu-

ments for dynamic document corpuses, based on semantic similarity. For every cluster,

the top correlated concepts from each document are extracted and are maintained as a

concept pool. Instead of computing the dissimilarity between document clusters and the

new document, the semantic similarity between the new document and the concept pool

is computed, which reduces the computation overhead.

Algorithm CCFICA
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Experimental results

Data set

The data set used for the experimental analysis contains 500 abstract articles collected

from the Science Direct digital library. The articles are classified according to the

Science Direct classification system into four major categories: computer networks

and communications, nuclear and high energy physics, economics and econometrics,

and civil and structural engineering. In addition, to that 20 Newgroups is considered

as another data, set for the result analysis which consists of more than 1000 news articles

related to Sports, Political and Share market tracks.

Performance metrics

F-measure and Purity are the performance measures used to evaluate the quality of

document clustering. F-measure combines the Precision and Recall from information

retrieval process Steinbach et al. (2000). Each cluster is treated as if it were the result of

a query, and each class as if it were the desired set of documents, for a query. The

recall and precision of that cluster for each given class are calculated. More specifically,

F-measure for cluster j and class iis calculated as follows:

Recall i; jð Þ ¼ nij
ni

ð12Þ

Precision i; jð Þ ¼ nij
nj

ð13Þ

F i; jð Þ ¼ 2 � Recall i; jð Þ � Precision i; jð Þð Þ
Presicion i; jð Þ þ Recall i; jð Þ ð14Þ

Where nij is the number of members of the class i in cluster j, nj is the number of

members of cluster j and ni is the number of members of class i. For each class, only the

cluster with highest F-measure is selected. Finally, the overall F-measure of a clustering

solution is weighted by the size of each cluster:

F Sð Þ ¼ 1
n

Xn

j¼1

nj
max F i; jð Þð Þ ð15Þ

The purity measure evaluates the coherence of a cluster, that is, the degree to which

a cluster contains documents from a single class Huang (2008). Given a particular clus-

ter Ci of size ni the purity of Ci is formally defined as:

P Cið Þ ¼ 1
n
max nhi

� � ð16Þ

Where max(ni
h) is the number of documents that are from the dominant class in
cluster Ci and ni
h represents the number of documents from cluster Ci assigned to class

h. The overall purity of a clustering solution is:

Purity Sð Þ ¼ 1
n

Xn

i−1
max nhi

� � ð17Þ

Implementation procedure

Initially, text documents which have been collected from various sources were accumulated

in a database. Then, pre-processing was carried out by considering the various stages like:
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tagging by means of Stanford POS tagger tool, stop word removal and stemming, based

on Porter Stemmer algorithm and morphological capabilities of WordNet. The above

preprocessing is common for both existing and proposed algorithms considered in this

study. Then the documents are represented as VSM. These documents are clustered

using Bisecting K-means algorithm which generates K number of clusters.

For implementing the existing algorithms the preprocessing as outlined in this work

along with dataset chosen for the study were used. The algorithms as originally proposed

by the various authors were implemented in the above environment. However, for CBM,

the entire model as originally proposed was not considered. Instead, the CBA algorithm

and clustering- based concept semantic similarity alone is implemented. For uniformity,

only the ICA clustering algorithm as originally proposed by the authors, were used in this

study, even though the original ICA algorithm starts with query retrieval and then

proceeds to clustering. By varying the number of documents the results of the proposed

and existing algorithms are measured. These algorithms are implemented in JDK 1.7

environment using Net Beans IDE.

Results and discussion
The Table 2 describes the document representation, similarity measures and the data set

adopted in the existing and the proposed algorithms. From the above Table the variations

between the proposed and existing algorithms in terms of representation, similarity measure

and the data set can be easily identified. The experiments are conducted by varying the

number of new documents from 50 to 500 that are to be inserted in the existing clusters.

Though CBA is not an incremental clustering algorithm it has been implemented as it

considers the semantic relations between documents. Entire document set and the new

document collection are given as input for processing in a static way.

The performance analysis of the existing (SHC, ESHC and CBA algorithms) and the pro-

posed algorithms (TMARDC, CCMARDC and CCFICA) are categorized into three classes:

i) Based on F-measure and Purity analysis for Scientific Literature;

ii) Based on F-measure and Purity analysis for Newsgroup and

iii)Based on pair-wise performance analysis (one to one comparison) for both datasets
Table 2 Techniques adopted in existing and proposed algorithms

Algorithm Document
representation

Similarity measure Data set

Existing algorithms

SHC Gad and Kamel
(2010)

Term weight
(word/phrase relationship)

Semantic Similarity Reuters-21578 and 20-Newsgroups

ESHC-IntraCVS Gavin
and Yue (2009)

Term frequency Cosine Similarity UW-CAN dataset, 314 web pages
from University of Waterloo

CBA (Shehata (2010);
Shehata et al. 2010)

Verb argument structure Concept similarity
Measure

ACM abstract articles, Reuters,
Brown corpus, Usenet newsgroups

ICA Liu et al. (2008) Term occurrencec Jaccard coefficient 20NewsGroup corpus

Proposed algorithms

TMARDC Term frequency MARDL, sentence
similarity

ACM abstract articles, 20Newsgroup

CCMARC Correlated terms Semantic similarity ACM abstract articles, 20Newsgroup

CCFICA Correlated terms Semantic similarity ACM abstract articles, 20Newsgroup
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F-measure and purity analysis for scientific literature dataset

The quality of the formulated cluster has been assessed based on F-measure and purity

as performance metrics. Figures 3 and 4 shows the results of the proposed correlated

term based algorithms CCFICA, CCMARDC and TMARDC (term based approach).

Both CCFICA and CCMARDC algorithms give better results compared to TMARDC

and the three existing algorithms considered in this study. This is because the data set

chosen for these experiments are domain-specific documents which consist of more

scientific and technical terms compared to English literary terms, contained in the

other dataset.

The proposed algorithms perform better than the existing algorithms, as they consider

the semantic relation between the documents. In CBA, the comparison is solely based on

the semantic structure (subject verb argument) of each sentence only. Though it extracts

the most prominent terms in sentences, it fails to capture technical correlation of terms

between the sentences and the documents. The other reason is that CBA is a static

clustering technique which applies clustering process for all the document clusters

including the new document (s). Clustering the entire document set is a time consuming

process. Also, extraction of semantic structure (subject verb argument) from the entire

document set leads to information loss; as only top sentences are extracted. As the

proposed CCMARDC captures the correlated concepts through the concept extraction

algorithm, and as it is also devised as a dynamic algorithm, the problem of information

loss has been overcome. Hence,the proposed CCMARDC algorithm gives better results,

compared to the existing CBA algorithm.
F-measure and purity analysis for newsgroup dataset

The Figures 5 and 6 show the average F-measure and Purity comparison for the existing

and proposed algorithms. From these, charts it is inferred that the quality of CCMARDC

and CCFICA algorithms are better than the existing CBA algorithm. The proposed

TMARDC algorithm gives better performance compared to ICA, SHC and ESHC al-

gorithms. The performance of the clustering is evaluated between two categories of

algorithms as: Concept based and Term frequency based algorithms. From the above

figures it is also inferred that CCMARDC& CCFICA compared with CBA gives less

improvement for newsgroup dataset. The drop in the performance of the 20newsgroup

dataset is due to the dominance of English literary terms in the documents, rather than

technical terms. Since the above dataset consists of more literary terms, synonyms and
Figure 3 F-measure comparison of dynamic document clustering algorithms for scientific dataset.



Figure 4 Purity comparison of dynamic document clustering algorithms for scientific dataset.
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hypernymns based CBA algorithm works on par with the proposed algorithms. But,

TMRARDC algorithm works better compared to the three existing algorithms considered

in this study.

Pair-wise performance analysis (one to one comparison) for both datasets

The experiments were conducted on two categories of algorithms:

i) Clustering based on term frequency (TMARDC, ICA, SHC, ESHC)

ii) Clustering based on concepts (CCMARDC, CCFICA, CBA)

The quality of the clustering could be judged properly only when the algorithms of

same category are evaluated and analyzed. To justify this statement a comparative analysis

between the following pairs CBA&CCMARDC, CBA&CCFICA algorithms have been

made, as CBA treats Synonyms and Hypernyms as concepts. Then, the performance evalu-

ation between the term frequency based algorithms (i.e. TMARDC&ICA, TMARDC&SHC,

TMARDC&ESHC) were analyzed. In the Figure 7 for simplicity the above pairs as: C1,

C2, T1, T2 and T3, where

C1 = CBA &CCMARDL C2 = CBA& CCFICA,

T1 = TMARDC&ICA,T2 = TMARDC&ESHC and T3 = TMARDC&SHC.

Figure 7A and B illustrates the percentage of improvement for scientific literature

dataset. Figure 8A and B illustrates the percentage of improvement for 20 Newsgroup
Figure 5 Average F-measure comparison between the proposed and existing algorithms for
newsgroup dataset.



Figure 6 Average purity comparison between the proposed and existing algorithms for
newsgroup dataset.
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dataset. The performance outcome of the proposed algorithms are consolidated and

presented in Table 3. The improvements in the performance of the proposed algorithms

are grouped into three classes namely; LOW, MEDIUM and HIGH. LOW corresponds to

improvement in the percentage between ±2%, MEDIUM between 0 to +11% and HIGH

from +11% to +36%. From the Figure 8A and B it is inferred that CCMARDC& CCFICA

when compared to CBA gives less improvement for newsgroup dataset. The drop in

performance for newsgroup dataset is due to the dominance of English literary terms in the

documents rather than technical terms. That is the reason CBA gives better performance

for some situations than the proposed CCMARDC and CCFICA algorithms. However, it is

pertinent to note here that the same CCMARDC& CCFICA algorithm when compared

with CBA gives MEDIUM improvement for scientific dataset. This is because the proposed

algorithms consider correlated terms, whereas, CBA takes the only Synonyms/Hypernyms

contained in the scientific and 20newsgroup dataset.

The term based algorithms are also experimented with the same set of document

collections and the results obtained are summarized in Table 3. It can be clearly stated

that the quality of clustering based on TMARDC gives appreciable performance compared

to the existing term based SHC, ESHC and ICA algorithms. This is because of identifying

the prominence of each sentence of the newly arrived document with the documents of the

samples using SIC and the relevancy of the new document against the each sample set,

using CIC and NCIC, thus leading to better quality improvement. Computing the similarity

between the samples and the new document(s) helps to choose a prominent cluster for

inserting the newly arrived document, rather than re-clustering the entire set. Whereas,
Figure 7 F-measure & purity improvement of proposed and existing algorithms for scientific
literature dataset. Figure 7A and B.



Figure 8 F-measure & purity improvement of proposed and existing algorithms for 20 newsgroup
dataset. Figure 8A and B.
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most of the incremental clustering algorithm works based on applying similarity measure

on the entire cluster and on the new document, the proposed algorithms basically compute

the similarity between the samples and new document(s) top concepts or terms. The

computation overhead is thus minimized to a greater extend, as these parameters are

computed against the new document and the sample set only, but not for the entire

cluster. Instead of choosing random samples, choosing the documents around cluster

centroid may also improve the quality.

Conclusions
The emphasis of the present work is Dynamic Document Clustering based on Term

frequency and Correlated based Concept algorithms, using semantic-based similarity

measure. The core idea of Data mining algorithms MARDL and FICA is adopted for the

proposed algorithms TMARDC, CCMARDC and CCFICA. In general the documents are

represented as TF-IDF, whereas, in this study the documents are represented by means of

correlated term vector (crtv). This representation helps the user to capture the technical

correlation between the documents. The proposed algorithms are compared with the

existing term frequency and synonyms/hypernyms based incremental document clustering

algorithms considering scientific literature and newsgroup dataset. From the comparative

analysis it can concluded that considering crtv representation for dynamic document

clustering leads to promising results especially for scientific literature. Sometimes the

results from the Newsgroup dataset are not promising, due to the need for relatively

more English literary terms, rather technical terms. In future, it is proposed to extend
Table 3 Result outcome improvement classes of proposed algorithms

DATASET ALGORITHM COMPARISON PURITY F-MEASURE

20Newsgroup dataset CCMARDC & CBA LOW LOW

CFICA & CBA LOW LOW

TMARDC & ICA MEDIUM MEDIUM

TMARDC & ESHC MEDIUM MEDIUM

TMARDC & SHC MEDIUM MEDIUM

Scientific literature dataset CCMARDC & CBA MEDIUM MEDIUM

CCFICA & CBA MEDIUM MEDIUM

TMARDC & ICA HIGH HIGH

TMARDC & SHC HIGH HIGH

TMARDC & ESHC HIGH HIGH
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concept extraction based on significant phrases in documents, and also by incorporating

semantic relations like hyponymy, holonymy, and meronymy.
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