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Interdisciplinary Centre for Security, Customer churn predictive modeling deals with predicting the probability of a
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Luxernbourg, Luxembourg City, customer defecting using historical, behavioral and socio-economical information. This
Luxembourg tool is of great benefit to subscription based companies allowing them to maximize
the results of retention campaigns. The problem of churn predictive modeling has
been widely studied by the data mining and machine learning communities. It is
usually tackled by using classification algorithms in order to learn the different patterns
of both the churners and non-churners. Nevertheless, current state-of-the-art
classification algorithms are not well aligned with commercial goals, in the sense that,
the models miss to include the real financial costs and benefits during the training and
evaluation phases. In the case of churn, evaluating a model based on a traditional
measure such as accuracy or predictive power, does not yield to the best results when
measured by the actual financial cost, ie. investment per subscriber on a loyalty
campaign and the financial impact of failing to detect a real churner versus wrongly
predicting a non-churner as a churner.

In this paper, we present a new cost-sensitive framework for customer churn predictive
modeling. First we propose a new financial based measure for evaluating the
effectiveness of a churn campaign taking into account the available portfolio of offers,
their individual financial cost and probability of offer acceptance depending on the
customer profile. Then, using a real-world churn dataset we compare different cost-
insensitive and cost-sensitive classification algorithms and measure their effectiveness
based on their predictive power and also the cost optimization. The results show that
using a cost-sensitive approach yields to an increase in cost savings of up to 26.4 %.

Keywords: Predictive modeling; Classification; Cost-sensitive; Churn; Customer
lifetime value

Background
The two main objectives of subscription-based companies are to acquire new subscribers
and retain those they already have, mainly because profits are directly linked with the
number of subscribers. In order to maximize the profit, companies must increase the cus-
tomer base by incrementing sales while decreasing the number of churners. Furthermore,
it is common knowledge that retaining a customer is about five times less expensive than
acquiring a new one (Farris et al. 2010), this creates pressure to have better and more
effective churn campaigns.

A typical churn campaign consists in identifying from the current customer base which
ones are more likely to leave the company, and make an offer in order to avoid that
behavior.
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With this in mind the companies use intelligence to create and improve retention and
collection strategies. In the first case, this usually implies an offer that can be either a
discount or a free upgrade during certain span of time. In both cases the company has
to assume a cost for that offer, therefore, accurate prediction of the churners becomes
important. The logic of this flow is shown in Fig. 1.

The typical churn campaign process starts with the sales that every month increase
the customer base, however, monthly there is a group of customers that decide to leave
the company for many reasons. Then the objective of a churn model is to identify those
customers before they take the decision of defecting.

Using a churn model, those customers more likely to leave are predicted as churners
and an offer is made in order to retain them. However, it is known that not all customers
will accept the offer, in the case when a customer is planning to defect, it is possible that
the offer is not good enough to retain him or that the reason for defecting can not be
influenced by an offer. Using historical information, it is estimated that a customer will
accept the offer with probability y. On the other hand, there is the case in which the churn
model misclassified a non-churner as churner, also known as false positives, in that case
the customer will always accept the offer that means and additional cost to the company
since those misclassified customers do not have the intentions of leaving.

In the case were the churn model predicts customers as non-churners, there is also
the possibility of a misclassification, in this case an actual churner is predicted as non-
churner, since these customers do not receive an offer and they will leave the company,
these cases are known as false negatives. Lastly, there is the case were the customers are
actually non-churners, then there is no need to make a retention offer to these customers
since they will continue to be part of the customer base.

It can be seen that a churn campaign (or churn model) have three main points. First,
avoid false positives since there is a financial cost of making an offer were it is not needed.
Second, to the true positives, give the right offer that maximize y while maximizing the
profit of the company. And lastly, to decrease the number of false negatives.

From a machine learning perspective, a churn model is a classification algorithm. In the
sense that using historical information, a prediction of which current customers are more
likely to defect, is made. This model is normally created using one of a number of well
establish algorithms (Logistic regression, neural networks, random forests, among others)
(KhakAbi et al. 2010; Ngai et al. 2009). Then, the model is evaluated using measures such
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as misclassification error, receiver operating characteristic (ROC), Kolmogorov—Smirnov
(KS) or FiScore statistics (Verbeke et al. 2012). However these measures assume that mis-
classification errors carry the same cost, which is not the case in churn modeling, since
failing to identify a profitable or unprofitable churner have significant different financial
costs (Glady et al. 2009).

In this paper we propose a new financial based measure for evaluating the effec-
tiveness of a voluntary churn campaign taking into account the available portfolio of
offers, their individual financial cost and probability of acceptance depending on the cus-
tomer profile. Moreover, we compare state-of-the-art classification algorithms, against
recently proposed cost-sensitive algorithms such as Bayes minimum risk (Correa Bahnsen
et al. 2014b), cost-sensitive logistic regression (Correa Bahnsen et al. 2014a), and cost-
sensitive decision trees (Correa Bahnsen et al. 2015). Then using a real-world churn
dataset we compare different cost-insensitive and cost-sensitive predictive analytics mod-
els, using the traditional and proposed statistics. The results will show that using a
cost-sensitive approach results in an increase in profitability of up to 26.4 %. Further-
more, the source code used for the experiments is publicly available as part of the
CostSensitiveClassification (Correa Bahnsen 2015) library.

The remainder of the paper is organized as follows: The first section, we propose a
new financial based measure for evaluating the effectiveness of a churn campaign. Then,
we describe the different cost-insensitive and cost-sensitive predictive analytics models.
Afterwards, the experimental setup is given. Here the dataset, and its partitioning are
presented. Finally the results and the conclusions of the paper are presented in the last

two sections.

Evaluation of a churn campaign
Traditionally, a churn model is evaluated as a standard binary classification model,
using measures such as misclassification error, receiver operating characteristic (ROC),
Kolmogorov—Smirnov (KS) or FiScore statistics (Verbeke et al. 2012). Most of these
measures are extracted by using a confusion matrix as shown in Table 1.

From this table several statistics are extracted. In particular:

- TP+TN
e Accuracy = TP+TN~+FP+EN
® Recall = Tpi%
® Precision = 7575

__  Precision-Recall
* FiScore = 2Precision+Recall

However, these measures may not be the most appropriate evaluation criteria when
evaluating a churn model, because they tacitly assume that misclassification errors carry
the same cost, similarly with the correct classified examples. This assumption does not

Table 1 Classification confusion matrix

Actual positive Actual negative
y=1 y=0
Predicted Positi
redicte 1OSI e True Positive (TP) False Positive (FP)
Cc=
Predicted Negative
! gativ False Negative (FN) True Positive (TN)

c=0
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hold in many real-world applications such as churn modeling, since when misidentifying
a churner the financial losses are quite different than when misclassifying a non-churner
as churner (Glady et al. 2009). Furthermore, the accuracy measure also assumes that the
class distribution among examples is constant and balanced (Provost et al. 1998), and
typically the distributions of a churn data set are skewed (Verbeke et al. 2012).

Different studies have proposed measures to deal with these cost-sensitivity related to
evaluating a churn model. In (Neslin et al. 2006), a profit-based measure was proposed
by starting with the confusion matrix and multiplying it with the expected profit of each

case.
Profity = (TP + FP) [(y CLV + Co(1 — y)(=Co)) my — G — Ca] — 4, (1)

with A being the fixed administrative cost of running the campaign, C, the average cost of
the retention offer, C, the cost of contacting the customer, 7r; the prior churn rate and CLV
the average customer lifetime value. Moreover, as discussed in (Verbraken et al. 2013), if
the average instead of the total profit is considered and the fixed cost A is discarded since
is irrelevant for classifier selection, the profit can be expressed as:

Profity = TP (y (CLV — C, — Co) + (1 — y)Cp) + FP(=C, — Cp). ()

Nevertheless, equations (1) and (2), assume that every customer has the same CLV and
C,, whereas this is not true in practice. In fact, different customers have a very different
CLV, and not all offers can be made to every customer, neither do they have the same
impact across customers. In order to obtain a more business oriented measure, we first
analyze the financial impact of the different decisions, ie. false positives, false negatives,
true positives and true negatives, for each customer. In Fig. 2, the financial impact of a
churn model is shown. Note than we take into account the costs and not the profit in each
case.

When a customer is predicted to be a churner, an offer is made with the objective of
avoiding the customer defecting. However, if a customer is actually a churner, he may or
not accept the offer with a probability y;. If the customer accepts the offer, the financial
impact is equal to the cost of the offer (Cy,) plus the administrative cost of contacting
the customer (C,). On the other hand, if the customer declines the offer, the cost is the
expected income that the clients would otherwise generate, also called customer lifetime
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value (CLV;), plus C,. Lastly, if the customer is not actually a churner, he will be happy to
accept the offer and the cost will be C,, plus C,.

In the case that the customer is predicted as non-churner, there are two possible out-
comes. Either the customer is not a churner, then the cost is zero, or the customer is a
churner and the cost is CLV;. In Table 2, we summarize the different costs in a cost matrix
(Elkan 2001).

Using the cost matrix, and following the example-dependent cost-sensitive framework
defined in (Correa Bahnsen et al. 2014a), an example-dependent cost statistic is defined
as:

Cost; = y;(c;Crp, + (1 — ¢;))Cen;) + (1 — y)(¢;Crp; + (1 — ¢;)Crn;)
= i(ci(viCo; + (1 — y)(CLV; + Cp)) + (1 — ¢;)CLV)
+ (1 = y)(ci(Co, + Ca) + (1 —¢i)(0))
= yi(ci (yi(Co; — CLV; — Cp) — Cy) + CLV) + ci(Co, + Co), (3)

leading to a total cost of:

N
Cost = Z Cost;. (4)
i=1
Furthermore, with the objective of having a measure that is comparable between
databases, the savings are defined as:

Cost; — Cost
Savings = Sosh — Los (5)
Cost;

where Cost; = min{Cost(fp), Cost(f1)}, or minimum between the cost of classifying all the
examples as negatives fy, or the cost of classifying all the examples as positives fi. In almost
cases the costless class will be the negative class, as typically the distribution of a churn
dataset is skewed towards the non-churners (Verbeke et al. 2012). Given that Cost; can be
expressed as Cost(fy), or simply Cost with ¢; = 0 Vi:

N
Cost; = Y yCLV;. (6)
i=0
This is consistent with the notion that if no model is used, the total cost would be the sum
of the customer lifetime values of the actual churners, which gives the insight that the Sav-
ings measure is comparing the financial impact of the campaign of using a classification
model against no using a model at all.

Customer lifetime value
Lastly, one of the key values to calculate the Savings, as described in (5), is the cus-

tomer lifetime value. Within marketing there exists a common misconception between

Table 2 Proposed churn modeling example-dependent cost matrix

Actual positive Actual negative
yi=1 yi=0
Predicted Positive
ot Crp = 7iCo + (1 = v)(CLV; + Co) G =Co+Ca
=
Predicted Negati
redicted Negative o, = CLY, oy =0

¢=0
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customer profitability and customer lifetime value. The two terms are usually used in an
interchangeable way, creating confusion of what the actual objective of a churn modeling
campaign should be. Several studies have proposed models providing a unique definition
of both terms (Milne and Boza 1999; Neslin et al. 2006; Pfeifer et al. 2004; van Raaij et al.
2003). Customer profitability indicates the difference between the income and the cost
generated by a customer i during a financial period ¢. It is defined as:

CPi,t =M Sits (7)

where s;; refers to the consumption of customer i during time period ¢, and u refers to
the average marginal profit by unit product usage.

Moreover, we are interested to see what is the expected income that a particular cus-
tomer will generate in the future, in other words, calculating the expected sum of discount
future earnings (Neslin et al. 2006). Therefore, the CLV; is defined as:

T

M- Sit

V=2 ®
t=1

where r is the discount rate, and T’ the number of time period. Typically T should be
considered large enough since without prior knowledge a customer is expected to keep
being a customer for the foreseeable future. In practice T is set up to be co (Glady et al.
2009). Also, for simplicity it can be assumed that s;¢+1 = si¢ - (1 + g) Vi, t, which means
that there is a constant growth g in the customer consumption. Given that, the customer
lifetime value can be re-written as

1 t
CLV; = Zilig;t' 1S, ©)

which in the case of g < r, this is a geometric series meaning that it can be expressed as
K- Sin
(r—g

CLV; = (10)

Cost-sensitive classification

Classification in the context of machine learning, deals with the problem of predicting
the class y; of a set of examples S, given their k variables, i.e. X; = [x},xlz, e ,xf‘] The
objective is to construct a function f(S) that makes a prediction ¢; of the class of each
example using its variables X;. Traditionally, predictive modeling methods are designed
to minimize some sort of misclassification measure such as the F;Score (Hastie et al.
2009). However, this means assuming that the different misclassification errors carry the
same cost, and as discussed before this is not the case in many real-world applications
specifically in churn modeling.

Methods that use different misclassification costs are known as cost-sensitive classifiers.
In particular we are interested in methods that are example-dependent cost-sensitive,
in the sense that the costs vary among examples and not only among classes. Example-
dependent cost-sensitive classification methods can be grouped according to the step
where the costs are introduced into the system. Either the costs are introduced prior the
training of the algorithm, after the training or during training (Wang 2013). In Fig. 3, the
different algorithms are grouped according to the stage in a classification system where
they are used.
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Fig. 3 Different example-dependent cost-sensitive algorithms grouped according to the stage in a
classification system where they are used

The first set of methods that were proposed to deal with the cost-sensitivity, consist
in re-weighting the training examples based on their costs, either by cost-proportionate
rejection-sampling (Zadrozny et al. 2003), or over-sampling (Elkan (Elkan 2001)). The
rejection-sampling approach consists in selecting a random subset S, by randomly select-
ing examples from S, and accepting each example i with probability w;/ {na])\([ {w;}, where

w; is defined as the expected misclassification error of example i
w; =y;- Cen; + (1 —y:) - Crp,. (11)

On the other hand, the over-sampling method consists in creating a new set S, by making
w; copies of each example i. However, cost-proportionate over-sampling increases the
training since |S,| >> |S|, and it also may result in over-fitting (Drummond and Holte
2003). Furthermore, none of these methods uses the the full cost matrix but only the
misclassification costs, which as described in the previous section, is not the case in churn
modeling.

However, the aforementioned methods, only introduce the cost by modifying the train-
ing set. In (Correa Bahnsen et al. 2013, 2014b), a cost-sensitive model called Bayes
minimum risk classifier (BMR) was proposed.

The BMR classifier is a decision model based on quantifying tradeoffs between various
decisions using probabilities and the costs that accompany such decisions. This is done in
a way that for each example the expected losses are minimized. In what follows, we con-
sider the probability estimates p; as known, regardless of the algorithm used to calculate
them. The risk that accompanies each decision is calculated. In the specific framework of
binary classification, the risk of predicting the example i as negative is

R(c; = 01X;) = Crn;(1 — pi) + Cen; - Pis (12)
and
R(c; = 1|1X;) = Crp, - pi + Cpp,(1 — py), (13)

is the risk when predicting the example as positive, where p; is the estimated positive
probability for example i. Subsequently, if

R(c; = 01X)) < R(¢; = 11Xy), (14)

then the example i is classified as negative. This means that the risk associated with the
decision ¢; is lower than the risk associated with classifying it as positive. However, when
using the output of a binary classifier as a basis for decision making, there is a need for a
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probability that not only separates well between positive and negative examples, but that
also assesses the real probability of the event (Cohen and Goldszmidt 2004), given that,
the estimated probabilities are usually calibrated either by an isotonic regression, Platt
regression, or the ROC convex hull methodologies (Hernandez-Orallo et al. 2012).

In a recent paper a cost-sensitive logistic regression algorithm (Correa Bahnsen et al.
2014a), was proposed. This method not only uses the costs before or after the training
phase, it also introduces the example-dependent costs into a logistic regression, by chang-
ing the objective function of the model to one that is cost-sensitive. The the new cost
function is defined as:

1 N
J®) =+ ; (yi(he (X))Crp, + (1 — hg(X))Crny)
+ (1 =) (he (X)) Cpp, + (1 — he(Xi))CTNi)>, (15)

where /(X)) = g(Z]]-(:l Qfx/l:) refers to the hypothesis of i given the parameters 6, and

g(-) is the logistic sigmoid function, defined as g(z) = 1/(1 + e~%). To find the coefficients
of the regression 6, the cost function is minimized by using binary genetic algorithms
(Haupt and Haupt 2004).

Following the same objective of modifying an existing algorithm by introducing the dif-
ferent cost into its calculation, a cost-sensitive decision tree algorithm (Correa Bahnsen
et al. 2015) was recently proposed. In this method a new splitting criteria is used during
the tree construction. In particular instead of using a traditional splitting criteria such as
Gini, entropy or misclassification, the Cost as defined in (4), of each tree node is calcu-
lated, and the gain of using each split evaluated as the decrease in total Savings of the
algorithm.

Experimental setup

In this section we describe the dataset used to evaluate the different cost-insensitive and
cost-sensitive classification algorithms. Afterwards, we show the procedure used to esti-
mate the probability of acceptance (y;) of each customer. Lastly, the partitioning of the
dataset is shown.

Database

For this paper we used a dataset provided by a TV cable provider. The dataset consists of
active customers during the first semester of 2014. The total dataset contains 9,410 indi-
vidual registries, each one with 45 attributes, including a churn label indicating whenever
a customer is a churner. This label was created internally in the company, and can be
regarded as highly accurate. In the dataset only 455 customers are churners, leading to a
churn ratio of 4.83 %.

Offer acceptance calculation

In practice companies have a set of offers to make to a customer as a part of the retention
campaign, they vary from discounts, to upgrades among others. In the particular case of
a TV cable provided, the offers include adding a new set of channels, changing the TV
receiver to one with new technology (ie. high definition, video recording, 4K), or to offer a
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Fig. 4 Acceptance rate (y) of the best offer for each customer profile. As expected, the higher the churn rate
the lower the acceptance rate, as it is more difficult to make a good offer to a customer which is more likely
to defect

discount on the monthly bill. Unsurprisingly, not all offers apply to all clients. For instance
a customer that already has all the channels can not be offered a new set of channels.
Moreover, an offer usually means an additional cost to the company and not all offers have
not the same cost or the same impact in reducing churn.

Taking into account the cost and the implication of the offers, the problem can be
resumed in making each customer the offer that will maximize the acceptance rate and
more important reducing the overall cost.

In order to calculate the acceptance probability y; a champion-challenger process
was made. First, the customers were grouped into clusters according to their behav-
ioral and socio-economical characteristics. In particular the K-means algorithm was
used (Marslan 2009). Then for a period of two months, randomly selected offers were
made to the customers and their response was evaluated. Unfortunately, for confiden-
tiality reasons we can not describe the different clusters, neither the actual offer made
to each customer. Nevertheless, in Fig. 4, the average churn rate and acceptance rate y;
per cluster is shown. As expected, the higher the churn rate the lower the acceptance
rate, as it is more difficult to make a good offer to a customer which is more likely
to defect.

Database partitioning

From the initial dataset, three different datasets are extracted: training, validation and
testing. Each one containing 50 %, 25 % and 25 % of the examples, respectively. After-
wards, with the objective of having a more balanced dataset, ie. same distribution of
churners and not churners, an under-sampling of the churners is made. Lastly, we also

Table 3 Description of datasets

Set N T Co

Total 9410 0483 580,884
Training (t) 3,758 0505 244,542
Validation 2,824 0477 174171
Testing 2,825 0442 162,171
Under-sampling (u) 374 5080 244,542
CS Rejection-sampling (r) 428 4135 431,428

CS Over-sampling (o) 5,767 03124 2,350,285
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Fig. 5 Comparison of the distribution of the churn rate and the average unitary cost (C, = Co/N) of each
dataset with respect to the Total set. It is observed that the cost-sensitive sampling procedures have an
average unitary cost much higher than the other sets, also showing why a simple under-sampling procedure
of the dataset does not take into account the costs

applied the cost-sensitive re-balancing techniques cost-proportionate rejection-sampling
(Zadrozny et al. 2003) and cost-proportionate over-sampling (Elkan 2001), described in
cost-sensitive classification Section. Table 3, summarizes the different datasets, where
N, 71 and Cp represents the number of customers, the percentage of churners and
the total losses if no model is used, respectively. Moreover, in Fig. 5, a comparison
of the churn rate and the average unitary cost (C, = Cp/N) of each dataset with
respect of the Total set is shown. It is observed that the cost-sensitive sampling pro-
cedures have an average unitary cost much higher than the other sets, also showing
why a simple under-sampling procedure of the dataset does not take into account the
costs.

Results
For the experiments we first used three classification algorithms, decision tree (DT), logis-
tic regression (LR) and a random forest (RF). Each algorithm is trained using the different

training sets: training (¢), under-sampling (), cost-proportionate rejection-sampling (r)

Table 4 Results of the decision tree (DT), logistic regression (LR) and random forest (RF) algorithms,
estimated using the different training sets: training (), under-sampling (u), cost-proportionate
rejection-sampling (r) and cost proportionate over-sampling (o)

Algorithm Set Savings F1Score

DT t -0.0001 £ 0.0193 0.0750 +£0.0199
u -0.0370 £+ 0.0603 0.1177 £0.0108
r 0.0018 £ 0.0549 0.1200 £ 0.0129
o] 0.0249 £ 0.0203 0.1019 £ 0.0189

LR t -0.0001 + 0.0002 0.0000 = 0.0000
u 0.0062 £ 0.0487 0.1227 4+ 0.0097
r 0.0500 £ 0.0372 0.1260 £ 0.0112
o 0.0320 £ 0.0225 0.1088 £ 0.0199

RF t -0.0026 +£ 0.0081 0.0245 £0.0148
u 0.0424 £ 0.0547 0.1342£0.0113
r 0.1033 4 0.0402 0.1443 £ 0.0127
0 0.0205 £ 0.0161 0.0845 £ 0.0204
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Table 5 Results of the decision tree (DT), logistic regression (LR) and random forest (RF) algorithms,
estimated using the different training sets

Algorithm Set Savings F1Score
DT-BMR t 0.0303 £0.0148 0.0946 £+ 0.0158
u 0.0574 £ 0.0387 0.1095 + 0.0203
r 0.0652 £ 0.0365 0.1151 £0.0169
¢] 0.0306 £ 0.0149 0.0924 +£0.0184
LR-BMR t 0.1058 £ 0.0319 0.1361 £0.0154
u 0.0963 £ 0.0388 0.1319 £ 0.0166
r 0.0823 £ 0.0364 0.1240 £ 0.0153
¢] 0.0986 £ 0.0287 0.1333 £0.0149
RF - BMR t 0.0835 £ 0.0349 0.1252 £ 0.0151
u 0.1300 £ 0.0368 0.1429 £ 0.0127
r 0.1336 4+ 0.0348 0.1429 £ 0.0132
o 0.0907 £ 0.0359 0.1275£0.0136

and cost-proportionate over-sampling (0). Unless otherwise stated, the random selection
of the training set was repeated 50 times, and in each time the models were trained and
results collected, this allows us to measure the stability of the results. On Table 4 the
results are shown. First, when observing the results on the ¢ and u sets, the RF algo-
rithm produces the best result by savings. Nevertheless, it is observed that the model
with the highest savings is not the same as the one with the highest F;Score, corrob-
orating the conclusions from (Correa Bahnsen et al. 2013), as selecting a method by a
traditional statistic does not gives the same result as selecting it using a business ori-
ented measure such as financial savings. Lastly, when observing the results from the
algorithms estimated using the cost-proportionate r and o sets, in all cases the results
measured by savings notably increase. The RF estimated with the r set, arises to sav-
ings of 10.33 %, more than twice the best model without using the cost-proportionate
sampling sets.

Furthermore, using each algorithm’s estimated probabilities we evaluate the result of
the Bayes minimum risk (BMR) model. On Table 5, the results are given. The best model
measured by savings is the RF trained with the r set. As is shown in Fig. 6, for all algo-
rithms there is an increase in savings when using the BMR. The BMR algorithm generates

25%
20%

+
5% .
10%
5%
0% - -
-5% 4
4
¢
!
+

Savings

-10%
-15%
-20%
Decision Tree Logistic Regression  Random Forest
Il Standard Algorithm N Bayes Minimum Risk

Fig. 6 Savings of the algorithms with and without using the BMR algorithm, estimated using the five training
sets. The BMR algorithm generates an increase in savings regardless of the algorithm used
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Fig. 7 FyScore of the algorithms with and without using the BMR algorithm, estimated using the five training
sets. There is no significant impact of using the BMR algorithm

an increase in savings regardless of the algorithm used. However, as can be observed in
Fig. 7, there is no significant impact of using the BMR algorithm.

Subsequently, we evaluate the cost-sensitive logistic regression (CSLR), estimated using
the default parameters as suggested in (Correa Bahnsen et al. 2014a). The results are
shown on Table 6. The CSLR method produces the significantly better results measured
by savings than the previously analyzed models. This method arise to an increase in sav-
ings of 10.82 % compared with the RF — BMR model. Similarly, with the F; Score statistic,
the best results are found when using the training set. However, this model is consistently
more unstable, since the standard deviation of the savings is more than twice than the
one of the previous models. This may be because, this model is estimated using genetic
algorithms, which is a random based algorithm.

Finally, the cost-sensitive decision trees (CSDT) is evaluated. The results are shown on
Table 7. Overall, the CSDT method produces highest results measured by savings. As
shown in Fig. 8, the CSDT algorithm has not only the highest savings but also is much
more stable than the CSLR. Moreover, it is interesting that both cost-sensitive methods
that include the costs during the training phase have the best results when trained using
the full training set, and that is because the algorithms need to learn the actual population
and costs distributions. Lastly, in Fig. 9, a comparison of the F1 — Score of the different
algorithms is made. It is observed that the best model selected by savings is not the same
as the one selected by the F1 — Score confirming the intuition that a model should be both
trained and evaluated taking into account the actual financial costs of the application, in
this case of the churn campaign process.

Table 6 Results of the cost-sensitive logistic regression (CSLR) algorithm, estimated using the
different training sets

Algorithm Set Savings FyScore

CSLR t 0.2418 + 0.0859 0.1079 £ 0.0318
u 0.1933 + 0.0879 0.0908 + 0.0055
r 0.1971 £ 0.0897 0.0911 4+ 0.0057

o 0.2042 +0.0914 0.0917 £ 0.0060
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Table 7 Results of the cost-sensitive decision tree (CSDT) algorithm, estimated using the different
training sets

Algorithm Set Savings F1Score
CSDT t 0.3062 £+ 0.0338 0.1254 £0.0210
u 0.1674 £ 0.0942 0.0922 £ 0.0063
r 0.1931 £ 0.1002 0.0935 + 0.0071
¢] 0.2716 £0.1157 0.1002 £ 0.0102
Conclusions

In this paper a new framework for a cost-sensitive churn predictive modeling was pre-
sented. First we show the importance of using the actual financial costs of the churn
modeling process, since there are significant differences in the results when evaluating a
churn campaign using a traditional such as the F1Score, than when using a measure that
incorporates the actual financial costs such as the savings. Moreover, we also show the
importance of having a measure that differentiates the costs within customers, since dif-
ferent customers have quite different financial impact as measured by their lifetime value.
Also, this framework can be expanded by using an additional classifier to predict the offer
response probability by customer.

Furthermore, our evaluations confirmed that including the costs of each example and
using an example-dependent cost-sensitive methods leads to better results in the sense
of higher savings. In particular, by using the cost-sensitive decision tree algorithm, the
financial savings are increased by 153,237 Euros, as compared to the savings of the cost-
insensitive random forest algorithm which amount to just 24,629 Euros.

Additionally, by testing the different example-dependent cost-sensitive classification
methods, we observed that when the costs are included during the pre-processing stage,
by using the cost-proportionate sampling methods, the savings are 60,005 Euros. On the
other hand, when the costs are included after the training with the Bayes minimum risk
algorithm, the savings are 77,606 Euros. Finally, by using the cost-sensitive decision tree
algorithm, which include the costs during the training phase, the savings increase quite

40%

20% E
v %
+
D

0%

Savings

-10%
RF-u RF-r RF-r CSLR-t CSDT-t
BMR
Fig. 8 Comparison of the random forest, logistic regression, Bayes minimum risk and cost-sensitive logistic
regression algorithms. Overall, the CSDT is the method that produces significant higher savings. Moreover, it
is observed that the cost-sensitive methods CSLR and CSDT gave the best results when estimated using the
full training dataset, thats because these models does not appear to be impacted by the class imbalance, and
themselves deal with the cost-sensitivity of each customer
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Fig. 9 Comparison of the random forest, logistic regression, Bayes minimum risk and cost-sensitive logistic
regression algorithms. The best model selected by savings is not the same as the one selected by the
F1 — Score

significantly to 177,867 Euros, hence, confirming the importance of using an algorithm
that take into account the different example-dependent costs during the training phase.
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