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Abstract

Crop yield is influenced over time and space, namely, by a wide range of variables
linked with crop genetics, agronomic management practices and the environment
under which the crop dynamically responds to maximize growth potential and
survival. Such variability can pose substantial uncertainty and risks in the use of
agricultural sustainability decision-making frameworks that include crop yield as a
leading metric. Here, decision analytics can play a vital role by guiding the use of
statistical-based analytics to build in a higher degree of intelligence to enable better
predictive (i.e., crop yield forecasting both over the growing season and inter-annually)
and prescriptive (optimization across crop areas and subdivisions) approaches. While
inter-annual variability in yield can be modelled based on a deterministic trend with
stochastic variation, quantifying the variability of yield and how it changes across
different spatial resolutions remains a major knowledge gap. To better understand
how yield scales spatially, we integrate in this study, for the first time, multi-scale
crop yield of spring wheat and its variance (i.e., field to district to region) obtained
within the major wheat growing region of the Canadian Prairies (Western Canada).
We found large differences between the mean and variance from field to district to
regional scales, from which we determined spatially-dependent (i.e., site specific)
scaling factors for the mean and variance of crop yield. From our analysis, we provide
several key recommendations for building capacity in assessing agricultural sustainability
using spatial-based metrics. In the future, the use of such metrics may broaden the
adoption and consistent implementation of new sustainable management protocols
and practices under a precautionary, adaptive management approach.
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Background
Current issues and challenges in agriculture sustainability assessment

Agricultural production systems integrate data and knowledge on climate, soils, crops

and livestock, alongside economic elements, such as material, labour, energy inputs,

and food and services outputs. Often, such information is not always available within a

study region, and so proxy data or information from other similar regions is utilized.

This process can be very subjective. In many real-world applications, there is a need to

upscale and/or downscale information in time and/or space to align different sources

of data and information. While there are a wide range of geospatial-based scaling tech-

niques, there is no clear consensus. Each technique, whether deterministic or stochastic,

can have very different assumptions and levels of suitability and reliability/confidence
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associated with a given application. As highlighted by Popp et al. (2004), economists, pol-

icy analysts and other agricultural decision-makers, in the case of crop yield risk, often

have a variety of different sources of information available to deal with. This includes ex-

perimental plot data from agricultural field research plots, agroecosystem model predic-

tions, survey farm-level sampling data, or regional- and national-scale estimates from

various governmental or private agencies. However, agricultural productions systems are

affected by socio-economic and cultural processes at local, regional, national, and inter-

national scales, including markets and trade, policies, trends in rural/urban population,

and technological development (de Vries 2013; INFASA 2006; Tubiello and Rosenzweig

2008). For this reason, when using and integrating environmental and economic informa-

tion for assessing the sustainability of agricultural production systems, the relative de-

pendence of data or information to a given scale needs to be determined and the valid

range over which it can be reliably scaled in time and space shall be determined.

Building capacity of development is the process by which individuals, groups, organi-

zations, institutions or societies increase their abilities to perform core functions, solve

problems, define and achieve objectives, and understand and deal with their develop-

ment needs in a broad context and in a sustainable manner (De Grauwe 2009). To

build capacity for assessing the sustainability of agricultural production systems, the

scaling behaviour of selected sustainability metrics must be statistically assessed and

validated in time and space. Different metrics for agricultural production systems

(Figure 1) are selected to span multiple spatial and temporal scales, i.e., from local to

regional, national and global, and short-term and long-term information on impacts. A

metric is a quantitative measure of the degree that a system, component, or process

can be measured by a given attribute. Because major aspects are involved in building

sustainability frameworks (Figure 1), better integrating a sufficient amount of know-

ledge and updating it so that it remains relevant and accurate to current day is of great

importance. However, there is a lack of consensus on how best to integrate and utilize

existing types of agricultural data and agroecosystem model outputs in terms of what

combinations of knowledge are best suited to accurately assess agricultural production

and processing systems, and enable compliance with emerging sustainability require-

ments. The existing methodologies (e.g., the IRIS (https://iris.thegiin.org/) catalog of

the Global Impact Investing Network) are generally based on different sets of assump-

tions, sustainability measures (i.e., criteria/sets of indicators), and accuracy of input data

sets. Simply adding more indicators (an indicator is defined as a variable, measured or

derived, that attains a given process state or condition) is a misguided goal. The indica-

tor choice and weighting are inherently very subjective processes, depending on value

and importance judgments (Morse et al. 2001). Often there is very little consistency be-

tween different frameworks and they are framed based more on what is available than

what is needed to reliably assess sustainability across all industrial sectors. Understand-

ing interconnections, risks and beneficial trade-offs is key to ensuring greater efficiency

and equitability of agricultural resource supply, alongside long-term sustainability and

resilience of agricultural systems.

Agricultural production depends upon various and interconnected factors (e.g., crop

genetics, agronomic management practices, the environment under which it dynamic-

ally responds to maximize crop growth potential and survival). Recent findings from

the inter-comparison and validation of agricultural crop models indicate that the



Figure 1 Sustainability assessment and aspects involved. A: Major aspects in developing sustainable
metrics. B: Overview of a set of ecosystem metrics and their leading indicators for assessing the
sustainability of agricultural production systems.
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prediction of crop yield over time and space is highly variable and, in turn, the relative

responses to climate shocks predicted by models can widely disagree (Nelson et al.

2014). Such variability pose substantial uncertainty and risks in the use of agricultural

sustainability decision-making frameworks that include crop yield as a leading metric.

To address this problem, decision analytics can play a vital role by guiding the use of

statistical-based analytics to build in a higher degree of intelligence to enable better

predictive (i.e., crop yield forecasting both over the growing season and inter-annually)

and prescriptive (optimization across crop areas and subdivisions) approaches. While



Kouadio and Newlands Decision Analytics  (2015) 2:2 Page 4 of 18
inter-annual variability in yield can be modelled under various deterministic trends

with stochastic variation, quantifying the variability of yield and how it changes across

different spatial resolutions remains a major knowledge gap. In some studies, field data

is available and is used to train and validate a crop model. In other applications, re-

gional estimates of crop yield mean and variance is measured by sampling a randomly

determined subset of fields within a region, without sampling all fields.

Research objectives

To better understand how yield scales spatially, we integrate, for the first time, multi-

scale crop yield of spring wheat and its variance (i.e., field to district to region) obtained

within the major wheat growing region of the Canadian Prairies (Western Canada).

The paper aims to build knowledge capacity for improving the design and development

of a sustainability assessment framework for agricultural production systems and

spatial-based sustainability metrics. We report selected findings from a multi-scale ana-

lysis of spring wheat yield as a leading metric of the sustainability performance of agri-

cultural production systems (crop yield being typically included within existing national

and regional sustainability development frameworks). Thus, we explore multi-scales

scaling behaviour of observed crop yield from field to sub-regional to regional scales

and highlight major multi-scale issues and multi-dimensional hurdles that must be

overcome to develop reliable metrics. The analysis also provides a comparative assess-

ment of the quantity and quality of alternative, available data sets and agroecosystem

model-based outputs for crop yield across the Canadian Prairies (provinces of Alberta,

Saskatchewan and Manitoba). To the best of our knowledge, no study related to the

spatial scaling of crop yield from field to rural municipality (RM), to ecodistrict (ECD),

to census agricultural regions (CAR) has been previously reported in the literature. This

is despite the importance of further geospatial importance of further geospatial analysis

to elucidate the spatial scaling/ translation function in the statistical multiscaling func-

tion, and greater confidence in estimates of scale dimension and exponent for crop

yield. In the future, the use of such leading metrics may broaden the adoption and con-

sistent implementation of new sustainable management protocols and practices under

a precautionary, adaptive management approach.

Methods
Yield data sources

Yield data of spring wheat (all cultivars included) at CAR, RM and ECD scales across

the provinces of Alberta, Saskatchewan and Manitoba were used. The data spanned dif-

ferent periods according to the spatial unit: from 1976 to 2013, 1992 to 2010, and 1976

to 2012 for CAR, ECD and RM scales, respectively. For the analysis, spatial units with

crop land were considered. The total number of CARs, ECDs, and RMs for each of the

Prairie provinces is given in Table 1. Only yield data at RM scale for Saskatchewan is

considered. They were retrieved from the Government of Saskatchewan website

(http://www.agriculture.gov.sk.ca/Statistics-Crops). Yield data at CAR scale come from

the Field Crop Reporting Series (FCRS) of the Agriculture Division, Statistics Canada

(Statistics Canada 2014). The reported yield is obtained by dividing the total production

by the harvested area in a given statistic unit. The methodology and error control of

the crop survey are explained in the online documents accompanying the FCRS



Table 1 Total number of spatial units with crop land extent across the Canadian Prairie
provinces

Province Census agricultural region Ecodistrict Rural municipality

Alberta 8 103 -

Manitoba 12 47 -

Saskatchewan 20 108 295

All Prairie provinces 40 233 -

Only the number of rural municipalities (RM) for Saskatchewan is provided as yield data is available at the RM scale for
this province.
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(Statistics Canada 2014). Data at RM scale for the province of Saskatchewan are col-

lected in the same manner. Yields at ECD scale were derived from the November

Crop Survey files of the FCRS and geospatial characteristics. Indeed, for each year

over the 1992–2010 period, the census subdivision level data were interpolated at

the ECD level based on the crop land extent map (derived from the Land Cover for

Agricultural Regions of Canada (http data gc ca data en dataset f5ded3b0 a5b4 4599

95d6 d853a825792b 2999)) and the ECD boundary map (Ecological Stratification

Working Group 1996). Field-scale data at three selected sites [i.e., Swift Current,

Melfort (province of Saskatchewan) and Lacombe (province of Alberta)] from

Agriculture and Agri-Food Canada (AAFC) experimental plots were considered in

this study. No long-term field-scale yield data were available for the province of

Manitoba.

Assessing the scaling behaviour of crop yield

The use of scaling factors that take into account the degree of spatial heterogeneity

linked with field or regional yield data may be especially important when integrating

yield data in different areas, i.e., from field to regional scales, or inter-comparing crop

models across different agricultural areas (with their input data obtained at different

number and location of validation sites).

We assume that crop yield (i.e. a leading sustainability metric) follows a power-law

distribution given by (Solé and Bascompte 2006):

Y sð Þ ¼ kA sð Þ−η; η > 1; s > smin ð1Þ

where Y(s) refers to the crop yield at a given spatial unit s; A(s) is the area of s; k is a

constant; η is the scaling exponent (as defined in standard fractal dimensional analysis);

and smin is a minimum threshold (i.e. non-zero) value for area, s, determined from ob-

servational data. From a given spatial scale s to another one αs (α being the shift scale),

we have Y(s) that changes to Y(αs). Y(s) is scale-invariant, whereby,

Y sð Þ ¼ α−ηY αsð Þ; η > 1 ð2Þ

where α-η is a spatial scaling (or scale translation) factor.

There are two possible representations corresponding to whether α >1 or α <1. In the

analysis of scale dependence and invariance in hydrology, values of α <1 are typically

obtained (Sposito 1998). Such values for α might also be generally expected in the



Kouadio and Newlands Decision Analytics  (2015) 2:2 Page 6 of 18
scaling of crop yield given the strong dependence of soil water and hydrological pro-

cesses, especially in semi-arid and arid regions.

Power laws, with the attribute of scale invariance, appear widely in physics, biology,

earth and planetary sciences, economics and finance, computer science, demography

and social sciences (e.g., Newman 2005; Brinsmead et al. 2015a, b). In our analysis we

utilize a log-log plot to identify power-law scaling behaviour, though Pareto Q-Q quar-

tile plots and mean residual life plots can also be used. The signature of a power law is

a linear relationship (i.e. with the scaling exponent η given by the absolute slope of the

straight line) in a log-log plot of Y(s) versus A(s). Power laws with exponents less than

unity cannot be normalized as its value diverges and do not normally occur in nature

(Newman 2005). As detailed by Newman (2005), after computing the normalization

constant, the mean value of a power-law distributed variable (i.e., crop yield) is given

by:

< Y sð Þ > ¼ k
2−η

A sð Þ−ηþ2� �∞
smin

ð3Þ

which becomes infinite if η ≤ 2. Power-laws with such low exponent values have no fi-
nite mean, and the mean would diverge if one had an infinite number of samples. In

such cases, the mean is not a “well-defined” quantity or metric because it can vary

enormously from one measurement to the next, especially at different scales s. If, how-

ever, η ≥ 2, then the mean is well-defined and is given by:

< Y sð Þ > ¼ η−1
η−2

smin; η > 2: ð4Þ

For a power-law distribution, the second distribution moment, or root-mean-square

(RMS) is given by (Newman 2005):

< Y 2 > ¼ η−1
η−3

s2min; η > 3: ð5Þ

If η ≥ 3, then the variance is well-defined and finite. Under scale invariance conditions
(i.e., power-law distributed yield), the mean is proportional to the scale linearly, but

its variance is proportional to the scale quadratically. In summary, for crop yield to

be a well-defined metric and finite (i.e. enabling simulation-distribution re-sampling

that is scale invariant), implies that the scaling exponents of its mean across spatial

scale s must satisfy η > 2, and its variance must satisfy η > 3. Otherwise, it is scale-

dependent with a scaling exponent that must be determined from cross-scale obser-

vational data, and used to spatially weight variance between different subregions

when upscaling or downscaling is undertaken. Thus, there is a high risk that the

variance is underestimated when applying simple neighbourhood averaging ap-

proaches, along with a substantial bias in the mean, depending on the particular

sampling method employed in measuring yield, and the resampling of its observed

distribution.
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The scaling variance δV is defined as the difference between the variance of crop yield,

Y(s) and Y(αs), related by a given finite spatial scaling or translation factor α (Eq. 6).

δV ¼ σ2
Y sð Þ−σ

2
Y αsð Þ ð6Þ

where

σ2Y sð Þ ¼
1
n

Xn

i¼1

Y sð Þi−�Y sð Þ� �2
; σ2Y αsð Þ ¼

1
n

Xn

i¼1

Y αsð Þi−�Y αsð Þ� �2 ð7Þ

Where n is the total number of years in our case. The estimated difference in net-
variance, δV, reduces to:

δV ¼ 1−α2η
� �: 1

n

Xn

i¼1

Y sð Þi−�Y sð Þ� �2
⇒δV ¼ 1−α2η

� �:σ2Y sð Þ; α > 0:

When there is no scaling (α = 0), there is no correction to variance required. How-

ever, when upscaling or downscaling the leading metric (α > 0), a correction factor that

increases or decreases the variance, respectively, is required. Spatial scale-dependent

exponents necessitate scaling yield by identifying a single or leading set of climate,

genetic/phenotypic and agronomic management variables that best (i.e., statistically) ex-

plain the observed variance, taking all field, subregional, regional data into consider-

ation in this computation.

Statistical analysis

We generated a cumulative distribution function (CDF) plot of the yield (pooled across

all spatial units) for each of the selected site to distinguishing between power-law and

log-normal scaling distributions based on heavy-tail behaviour. We referred to the

Kolmogorov-Smirnov (KS) statistic and the fitness significance (referred to as p-value;

Clauset et al. 2009) to assess the goodness-of-fit between theoretical and empirical dis-

tributions. KS is the maximum distance between the CDFs of the observed data and

the fitted distribution (Press et al. 1992). The p-value is defined to be the fraction of

the synthetic distances between the distribution of the empirical data and the hypothe-

sized model that are larger than the empirical distance (Clauset et al. 2009). The hypoth-

esis of goodness-of-fit with respect to the theoretical model is rejected if p-value < 0.1

(Clauset et al. 2009). Smaller KS scores denote better fit of the theoretical distribution to

the empirical one. The methodology used for computing the KS statistic and the p-value

is that proposed by Clauset et al. (2009), i.e., maximum likelihood estimation method

for gauging the parameters and Monte Carlo procedure for generating synthetic data

sets (i.e., 2500 data sets) and then compute the statistics. The R-package “poweRlaw”

(Gillespie 2014) was used to perform these calculations.

The scaling behaviour was computed through a log-log plot. In this scaling analysis,

we considered the annual harvested areas. Only official harvested areas at CAR scale

are available from the data source used (Statistics Canada 2014). Therefore, the annual

harvested area in a given ECD or RM was calculated as a percentage of this unit area

within the corresponding CAR multiplied by the ratio annual harvested area/unit area

in this CAR. Whereas the harvested area at field scale was set at 50 ha for the three

selected sites. For each of the selected sites, we determined the spatially-dependent
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(i.e. site specific) scaling factors for the mean and variance of crop yield. All the ana-

lyses were performed using R (R Core Team 2014).

In addition, an example of the performance of the APSIM model (Agricultural

Production Systems Simulator; Keating et al. 2003) in a long-term cropping systems

trial in Canadian conditions is provided. Although they are a simplification or abstrac-

tion of a real (managed) complex dynamic system, agroecosystem models are used to

describe the relationships within the Soil-Plant-Atmosphere continuum. The objective

of this example is to highlight the complexity in the set-up of agroecosystems at finer

scales and the expecting ones when applying them at larger scales (with yield data at

these larger scales used for validation). APSIM was calibrated based on experimental

data retrieved from previous studies (Wang et al. 2002, 2003; Gervais et al. 2010;

Mkhabela and Bullock 2012) involving the three selected sites (Table 2).
Results and discussion
Yield variability

Spring wheat yield varies inter-annually and spatially across the Canadian Prairies

(Figure 2). A great variability in field-scale data was observed. Such variability is rela-

tively high due to different management practices (e.g., soil tillage, use efficiency of

water and fertilizer), and genetic (crop cultivars, technological improvement). Whereas

at large scales the outliers in crop yield data may originate from misreporting, extreme

weather conditions, management errors of farmers, or methodological changes in

data collection (Finger 2010). However, general similar patterns are evident across

the three spatial scales, namely when relating to extreme climate events such as

drought (i.e. abnormal dry to exceptional drought conditions across the Great

Plains/Midwestern of North America in 2002).

The use of historical yield data within a sustainability assessment framework implies

taking into account existing trends in those data. Generally, a technological trend

(i.e., better genetics, improved management practices and farm machinery, etc.) is

evaluated. Environmental factors such as seasonal climate indices could also be ex-

plored. Understanding the historical and future potential spatial impact of multiple tele-

connections on crops may provide some insights on yield inter-annual variability and

considerably improve spatially-explicit forecasting of future crop potential production and

decision-making involving changes in cropland distribution under changing climate vari-

ability. Findings on the spatial impact of long-term climate teleconnections (such as El

Niño Southern Oscillation, ENSO) shows that it enacts a strong influence on crop yield

and its inter-annual variability (Iizumi et al. 2013; Iizumi et al. 2014; Valdez-Cepeda et al.

2007). In the scaling behaviour analysis, no data detrending was performed. We assumed

the existence of the same trend throughout the spatial scales for a given site in our ana-

lysis. Future works will include trend analyses at each spatial units, i.e. decompose the

whole net trend into various trends (technology, climate-related, etc.).
Spatially-dependent scaling in crop yield

The CDF plots of spring wheat yield for each of the selected site are shown in Figure 3.

For Lacombe and Swift Current the spring wheat yield pooled across all the spatial

units (field, RM, ECD, and CAR) follow a power-law distribution, compared with a



Table 2 Selected sites and data period considered in the analysis

Yield data period

Official statistics Field
scale

Simulated
yield2Site Longitude (dd1) Latitude (dd) CAR-ID ECD-ID RM-ID Soil type Climate data period CAR scale ECD scale RM scale

Melfort −104.6008 52.817 4780 705 428 Black Chernozem 1961-2012 1976-2013 1992-2010 1976-2012 1946-20093 1961-2012

Swift Current −107.7330 50.2670 4732 825 137 Brown Chernozem 1940-2012 1976-2013 1992-2010 1976-2012 1949-20094 1940-2012

Lacombe −113.7500 52.4500 4850 737 n.a5 Black Chernozem 1961-2012 1976-2013 1992-2010 1976-2012 1946-20096 1961-2012
1degree decimals.
2Yield simulated using the APSIM model.
3no data available in 1974–1993.
4no data available in 1959, 2006–2007.
5not applicable.
6no data available in 1953, 1962, 1971–1993, 2001, 2006–2007.
CAR, ECD, and RM refer to census agricultural region, ecodistrict, and rural municipality, respectively. Climate data include the daily minimum and maximum air temperatures, rainfall and solar radiation (solar radiation
data were simulated using the SolarCalc model, Spokas and Forcella (2006)). Field-scale yield data come from AAFC (Agriculture and Agri-Food Canada) experimental plots.
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Figure 2 Inter-annual variability of spring wheat yield, from left to right, at the Census Agricultural
Region, Ecodistrict, and Rural Municipality scales for the Canadian Prairie provinces (i.e. Alberta,
Saskatchewan, Manitoba). The boxes represent the first and third quartiles as a measure of data spread
spanning 50% of the dataset and eliminating the influence of outliers; the median yield is the horizontal
line within the box. The whiskers are the two lines outside the box that extend to the highest and lowest
data values. n is the total number of spatial units. Note: some ecodistricts overlay two provinces as they are
not linked to administrative boundaries.
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log-normal distribution: lower KS values and p-value greater than 0.1. Whereas for

Melfort, the log-normal distribution is the best fit, even though the power-law distri-

bution is also acceptable (KS = 0.0768, p-value ≈ 0.1; Figure 3). The analyses of the

distribution assumption of crop yield at each spatial scale for each selected site (not

shown) indicated that yield data were power-law distributed in most cases at field scale

and that the log-normal distribution outperformed at larger scales (ECD and CAR).

However, such results (at each spatial scale) should be dealt with caution since small

number of observations is involved (<50). Indeed, the power-law function may appear

to be a good fit even if the data are drawn from a non-power-law distribution, in

addition to the difficulty to rule out alternative fits to such data (Clauset et al. 2009.

Nevertheless, the general trend observed with three sites at four spatial scales in our

case study could be replicated with more data. The tail behaviour, as well as the differ-

ence of scaling behaviours between the sites in Saskatchewan and the site in Alberta

(Figure 3), might be linked to the climate as consequences of its spatial variability.

While there are several methods available for estimating the exponent of power-law

distributions from empirical data, the maximum likelihood estimation outperforms

other methods in both accuracy and precision (White et al. 2008). Generally, one can



Figure 3 Cumulative distribution function (CDF) plots of observed spring wheat yields for Melfort,
Swift Current and Lacombe. The power-law (A) and log-normal (B) distributions are used as theoretical
distributions. The line of best fit is also represented. Kolmogorov-Smirnov (KS) statistic and p-values are
computed according to the methodology proposed by Clauset et al. (2009). 2500 synthetic data sets were
generated for the computation. Good fits are characterized by small KS and p-value < 0.1.
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expect either a spatially-dependent trend that is homogeneous (i.e. linear) or heteroge-

neous (e.g. exponential, power-law, etc.) scaling behaviour when comparing the data.

An evidence of a spatially-dependent scaling at the selected sites is shown in Figures 4

and 5. Scaling exponents (η) for the mean of crop yield for all the sites (Figure 4) were

2.6%, 2.3% and 2.9%, respectively for Melfort, Swift Current, and Lacombe (P = 0.013,

0.035, 0.002, respectively). These values are similar to that obtained in de Wit et al.

(2005) with simulated yield data (ratio of ~5 for 10–50 km shift). P measures whether

an observed result can be attributed to chance. But it cannot answer whether a null

hypothesis is correct. The odds depends on how strong the result was, and how plausible

the hypothesis is (Nuzzo 2014). Given the scaling factors measure the degree of spatial

heterogeneity at each of the selected sites, this highlights the importance of neighbour-

hood influences on yield data obtained at a specific location (near-field variance), as well

as the proportion of explained variance in regional-scale crop yield predictions attribut-

able to far-field variance when sampling across many fields in a given region.

Regarding the variance of crop yield across spatial scales (Figure 5), linear trends were

found for Melfort and Swift Current: factors α-η = 2.28 (P = 0.021) and 2.14 (P = 0.026),

respectively. A quadratic trend was the better fit for the variance in yield for Lacombe,

suggesting therefore a heterogeneous scaling behaviour (α-η = 2.48).

Our findings, based on the estimated scaling exponents in the distribution of the

mean and variance of crop yield, indicate that the spring wheat yield is not a

well-defined metric at the selected sites. This is because its distribution at any given

scale is highly dependent on different variables, conditions, sampling method and other

attributes associated with an individual data set. As we demonstrate, employing

decision analytics to quantify scaling behaviour in the crop yield distribution, helps to



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Scaling behaviour of crop yield at each of the selected sites: Melfort (A), Swift Current (B)
and Lacombe (C). RM, ECD, CAR refer to rural municipality, ecodistrict, and census agricultural region,
respectively. The logarithm values of yield data are plotted against the logarithm of the average harvested
areas. The scaling factor α-η corresponds to the absolute slope of the straight line. For a given site, yield
data at RM, ECD and CAR is that of the corresponding spatial unit in which it falls. Data were not
detrended. We assumed that the same trend exist throughout the spatial scales for a given site. All the
slopes were significant at the confidence level 0.05.
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better define it and enable its use as a reliable sustainability metric. Here, specifying the

scaling exponent for a given observed/application scale, alongside the cross-scale trans-

lation factor (as two additional statistically-based indicators on yield variability) helps

to better define the crop yield metric. We find that the spring wheat yield is not scale

invariant, but scale-dependent whereby a scaling factor α-η, where it is either constant

or non-constant being mediated across spatial scale according to a function of auxiliary

soil-crop-water-atmospheric variables (i.e., η = η(…)). In either case, when upscaling or

downscaling, a scaling correction factor needs to be determined from a scaling analysis

across different spatial scales. There is, therefore, a risk when spatially aggregating yield

data, whereby variance can be artificially distorted. At the census subdivision (RM and

CAR levels) a field survey protocol is typically established to minimize various sources

in errors, often by aggregating yield data without adequately accounting for cross-scale

spatial variability and extreme values of yield distribution. Such methods frequently

ignore specific differences in spatial scaling behaviour and this leads to bias and

additional variance when upscaling and/or downscaling data. The use of scaling factors

that take into account the degree of spatial heterogeneity linked with field or regional
Figure 5 Observed scaling behaviour of crop yield variance at each of the selected sites.
Whether an artefact in data, or a scaling driven by real response to a variable like soil moisture, such scaling
variance needs to be accounted for when integrating data for crop yield and using it as a metric for
assessing sustainability.
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yield data may be especially important when inter-comparing crop models across

different agricultural areas and using input data obtained at a different number and

location of validation sites and when integrated yield data in different areas from the

field to regional scale.
Agroecosystems versus data uncertainties

When supplied with sufficient data, 27 models simulating wheat yield under both nor-

mal and climate variability conditions were able to reproduce experimental data well,

but forecasting out 50–100 years was more uncertain because of a wide range of pos-

sible climate conditions and differences in modelled crop response to increasing

temperature and CO2 (Asseng et al. 2013). In our analysis, though similar patterns are

noticed between observed yields at field-scale and simulated yields (Figure 6), the latter

are over-estimated in most years at Melfort and Swift Current (1 to 2 times higher than

the reported yields), and under-estimated at Lacombe. Nevertheless, the trend in re-

ported yields is captured by the model, suggesting therefore that with sufficient calibra-

tion APSIM could give satisfactory outputs for wheat yield forecasting purposes. Using

a crop model at regional scale remains challenging because of several aspects, including

the number of parameters to be simultaneously calibrated, the availability of data and

the uncertainties related to such data when changing scales (e.g. soil properties, sowing

dates, irrigation dates).

Reported historical data at regional and national scales are by far the reliable data sets

used for modelling purposes (Nelson et al. 2014; Newlands et al. 2014). However, un-

certainties (i.e. coefficient of variation) linked to such data are often missing as part of

additional information. This kind of information should be readily available to help the

scientific community in focusing their research efforts on the scales or units with high

variability. Additional biases may also be introduced when integrating different data

and models with different assumptions into agricultural sustainability decision-making

frameworks. This leads to the incorrect estimation and prediction of crop yield, yield

gaps and yield risk. Capturing the distortion or bias in yield when scaling data could be

achieved by propagating the uncertainty in the entire distribution of yield (e.g., through

Bayesian statistical approaches) and by mapping yield risks based on variance explained

by leading explanatory variables within spatially aggregated regions or time-intervals.

Typically within sustainability assessment frameworks, additional bias and variance

(i.e., uncertainty) introduced when data or model outputs are downscaled or upscaled

to align with required spatial and temporal resolution and coverage for a given applica-

tion, are not considered or assessed sufficiently. However, promising methods do exist

and could be applied for this purpose. An example is the probabilistic methodology for

adaptively selecting sustainability indicators relevant to a given problem and scale based

on a quantitative assessment of the uncertainty of available data and model-based

outputs has been devised (Newlands et al. 2013). This approach is able to integrate

stakeholder/expert knowledge, empirical and process-based model algorithms using

remote-sensing and national agri-environmental datasets, and has undergone preliminary

validation testing to assess its ability to predict potential risks and impacts over time and

space, in relation to land suitability and nitrogen loading of water for two primary

agricultural regions of Canadian (western Prairie provinces and southern Ontario).



Figure 6 Historical and simulated yields of spring wheat at different spatial scales for each selected
sites. CAR (ECD): official yields at the Census Agricultural Region (Ecodistrict) scale from Statistics Canada’s
Field Crop Reporting Series. RM: official yield at rural municipality scale. APSIM: simulated yields using APSIM
(station-based weather data used for the simulations). There is no historical yield data available at RM scale
for Lacombe. The discontinuity periods in field-scale yield data are reported in Table 2.
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Conclusions
Our study emphasizes the spatial scaling behaviour of spring wheat yield across the

Canadian Prairie provinces. The results reveal large differences between the mean and

variance of crop yield from field to regional scales and different spatially-dependent

(i.e., site specific) scaling behaviours. Spring wheat yields at the selected sites are signifi-

cantly distributed differently across the different spatial scales (P < 0.05) and can exhibit

a wide range of tail/extremes behaviour. Furthermore, our null hypothesis of invariant

scaling in crop yield based on data from three sites across four scales is rejected in

favour of the alternative hypothesis of spatial dependence. The clear differences of
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scaling behaviour in the distribution of the mean and variance of crop yield could be

replicated with more data and extended to other economically important crops. Our

analysis also highlights the importance of neighbourhood influences on yield data

obtained at a specific location (near-field variance), as well as the proportion of

explained variance in regional-scale crop model predictions attributable to far-field

variance when sampling across many fields in a given region. Scaling exponents and

translation factors can be used to correct either field- or regional-scale yield data in

consistent way. In order to take into account the scaling behaviour, reliable protocols

for upscaling/downscaling need to be applied, which allow more flexibility on data

interpretation and their use in research studies. This should include long time series

crop trials data at different locations for efficiently assessing such scaling. Field-scale

data are thus urgently needed to enable the estimation of scaling factors for crop yield.

Even for a national or sub-national purposes large number of validation sites will be of

great importance for the finer-scale data and for choosing the suitable and relevant

larger scale to be used. Soil moisture also plays a leading role in influencing crop yield

at different scales and supports integrated remote sensing approaches for monitoring

and assessing sustainability of open and highly dynamic systems (Phillips et al. 2014).

Furthermore, extremes of yield distributions (tail behaviour) need to be taken into

account (through fitting a generalized extreme value distribution) when using yield as a

metric for sustainability assessment, as well as in upscaling/downscaling techniques

and crop modelling and crop yield forecasting.

In Canada, the Federal Sustainable Development Act requires the development and

maintenance of systems and procedures to monitor progress on the Federal Sustainable

Development Strategy (FSDS (https://www.ec.gc.ca/dd-sd/default.asp?lang=En\&n=92

77C8B9-1)) implementation. To enable such an integration, there is an urgent need to

further develop and better assess how agricultural sector-based indicators that rely on

historical and scenario geospatial (i.e., spatial-based) data and model outputs could be

best integrated into the FSDS framework. A set of agri-environmental indicators and

geospatial data on soils, climate and land surface features with statistics on land use

and crop and livestock management practices are available through governmental agen-

cies (for example the National Agri-Environmental Health Analysis and Reporting Pro-

gram of AAFC). The datasets provide valuable, location-specific information on the

overall environmental risks and conditions in agriculture across Canada and how they

change over time (i.e., every 5 years). However, there is a critical need for long-term

time series data from crop trials (i.e., information on cultivars, biomass, yield, crop

management, etc.) be made widely available so to enable a more comprehensive ana-

lysis to: (i) assess the spatial dependency when upscaling/downscaling data, and (ii) cali-

brate/validate a suitable agroecosystem to be used in studies involving crop yield

forecasting and more generally the impact of the climate change on agriculture. Fur-

thermore, a common data sharing platform for historical climate, yield and other agri-

cultural data that is quality-controlled and continually updated for all end-users is

needed. This enables a consistent set of validated scripts for data manipulation and

assimilation, modelling and decision analytics.

The case study in this paper shows that there are various hurdles in developing

sustainability frameworks, related to the available data and their uncertainties, the spatial

scales involved and the performance of process-based crop models used. Biases
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introduced when integrating different data and/or crop model outputs with different scal-

ing assumptions, may lead to incorrect estimation and prediction of crop yield, yield gaps

and yield risk. While sophisticated, statistical techniques do exist that can correct for dis-

tortion of yield variance and bias when aggregating data and for propagating uncertainty

when integrating data and model-based output, typically, such methods are not readily

available for practitioners. The distortion is therefore either simply ignored, with even

simple corrections or remedies that could be minimally undertaken, neglected. We rec-

ommend addressing three core aspects in guiding the integration and use of sustainability

metrics, namely: complexity (number and type of metrics), applicability (perspective, as-

sumptions, scale) and reliability (known impacts, unknown adaptation, response uncer-

tainty and risk). If these inherent features that are inextricably linked to how coupled

environmental, economic and social systems fundamentally behave and interact, are ig-

nored, even a precautionary, adaptive approach could be considered too risky. However, if

one can encapsulate these features within a sustainability assessment framework, then

they can be better understood, mimicked and controlled. To help in convergence of di-

verse, interdisciplinary knowledge, participatory decision-making and monitoring ap-

proaches are needed, in addition to core metric and sustainability decision analytics.
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