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Abstract

The rationalization of the healthcare processes and organizations is a task of fundamental importance to grant both
the quality and the standardization of healthcare services, and the minimization of costs. Clinical Practice Guidelines
(CPGs) are one of the major tools that have been introduced to achieve such a challenging task. CPGs are widely
used to provide decision support to physicians, supplying them with evidence-based predictive and prescriptive
information about patients’ status and treatments, but usually on individual pathologies. This sets up the urgent
need for developing decision support methodologies to assist physicians and healthcare managers in the detection
of interactions between guidelines, to help them to devise appropriate patterns of treatment for comorbid patients
(i.e., patients affected by multiple diseases).
We identify different levels of abstractions in the analysis of interactions, based on both the hierarchical
organization of clinical guidelines (in which composite actions are refined into their components) and the
hierarchy of drug categories. We then propose a general methodology (data/knowledge structures and
reasoning algorithms operating on them) supporting user-driven and flexible interaction detection over the
multiple levels of abstraction. Finally, we discuss the impact of the adoption of computerized clinical guidelines in
general, and of our methodology in particular, for patients (quality of the received healthcare services), physicians
(decision support and quality of provided services), and healthcare managers and organizations (quality and
optimization of provided services).

Keywords: Computer-interpretable guidelines; Healthcare decision support; Ontology of interactions; Interaction
detection algorithm; Multiple level analysis
Background
Given its social and economic relevance, the healthcare
system is the object of continuous studies, aiming at
optimizing it, both in terms of costs, and of the quality
of the supplied services. ICT can significantly contribute
to achieve healthcare optimization, both in terms of
providing healthcare managers and organizations with
decision analytic tools to optimize healthcare processes
in terms of process and cost rationalization; and also in
terms of providing clinical decision-making support,
improving the quality and the standardization of health-
care services. Clinical Practice Guidelines (CPGs) are
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one of the major tools that have been introduced to pro-
vide medical decision support. CPGs are, in the definition
of the USA Institute of Medicine, “systematically devel-
oped statements to assist practitioner and patient decisions
about appropriate health care in specific clinical circum-
stances” (Institute of Medicine, Committee on Quality
Health Care in America 2001). Thousands of CPGs
have been devised in the last few years. For instance, the
Guideline International Network (http://www.g-i-n.net)
groups 77 organizations from 4 continents, and provides a
library of more than 5000 CPGs. CPGs are commonly rec-
ognized as a tool to encode and support the practical
adoption of evidence-based medicine (EBM).
The adoption of computerized approaches to acquire,

represent, execute and reason with CPGs can further
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increase the advantages of CPGs, providing crucial ad-
vantages to:

1. patients, enabling them to receive the best quality
medical treatments (since CPGs are actually a way
of putting EBM into practice);

2. physicians, providing them with a standard reference
which they may consult, with a way of certifying the
quality of their activity (e.g., for insurance or legal
purposes), as well as with advanced support for their
decision-making activity;

3. hospitals, and healthcare centers, providing them
with tools to enable the quality and the
standardization of their services, as well as with a
means of evaluating quality, and of optimizing costs
and resources.

In recent years, the research about computerized
guidelines has reached an important role within the
Medical Informatics community, and many different
approaches and projects have been developed to create
domain-independent computer-assisted tools for man-
aging, acquiring, representing and executing computer-
interpretable clinical guidelines (henceforth CIGs). See e.g.
the systems Asbru (Shahar et al. 1998), EON (Shahar et al.
1996), GEM (Shiffman et al. 2000) GLARE (Terenziani
et al. 2001) (Terenziani et al. 2003), GLIF (Peleg et al.
2000), GUIDE (Quaglini et al. 2001), PROforma (Fox et al.
1998), and the collections (Gordon and Christensen 1995)
(Fridsma 2001) (Ten Teije et al. 2008) (Peleg 2013). One
of such approaches is GLARE (Guideline Acquisition,
Representation and Execution), which started from 1997
in a long-term cooperation between the Department of
Computer Science of the University of Eastern Piedmont
Alessandria, Italy, and the Azienda Ospedaliera San
Giovanni Battista in Turin (one of the largest hospitals in
Italy). Besides supporting CIG acquisition, representation,
storage and execution, GLARE is characterized by the
adoption of advanced Artificial Intelligence and Temporal
Database formal techniques to provide advanced sup-
ports for different tasks, including reasoning about
temporal constraints (Anselma et al. 2006), the treatment
of periodic data (Stantic et al. 2012), guideline ver-
sioning (Anselma et al. 2013), model-checking verification
(Bottrighi et al. 2010), decision support (based on Decision
Theory) (Montani and Terenziani 2006) (Anselma et al.
2011), contextualization (Terenziani et al. 2004).

A critical issue: the treatment of comorbid patients
By definition, clinical guidelines address specific clinical
circumstances (i.e., specific diseases). However, unfortu-
nately, specific patients may be affected by more than one
disease. The treatment of patients affected by multiple dis-
eases (comorbid patients) is one of the main challenges
for modern healthcare, also due to population aging and
the increase of chronic diseases. For example, the preva-
lence of chronic diseases such as hypertension, diabetes
mellitus or heart failure in society has grown during the
last decades as the number of elderly people has increased
(Robert Wood Johnson Foundation and Partnership for
Solutions 2004). Moreover, most of the patients suffering
from such chronic diseases, are affected by two or more of
them (Gijsen et al. 2001).

Thus, “health care systems must deal with an
increasing number of patients with several
simultaneous pathologies (i.e., co-morbid patients).…
Clinical practice guidelines provide evidence-based
information of interventions, but only on individual
pathologies. This sets up the urgent need of developing
ways of merging multiple single-disease interventions
to provide professionals’ assistance to comorbid
patients”. (Riaño and Collado 2013).

However, though some CPGs covering frequently oc-
curring co-morbidities might be devised, the approach
of considering all the possible combinations of patholo-
gies does not scale up:

“Developing Clinical Practice Guidelines that
explicitly address all potential co-morbid diseases
is not only difficult, but also impractical, and
there is a need for formal methods that would allow
combining several disease-specific clinical practice
guidelines in order to customize them to a patient”.
(Michalowski et al. 2013).

Several studies show that the lack of such methods is
one of the obstacles to the adoption of CPGs in clinical
practice, and the development of these methods has
been identified as one of the “grand challenges” for
clinical decision support (Sittig et al. 2008).
In the past few years, some computer-based approaches

have started to face this problem, aiming at providing
physicians with different forms of support for managing
multiple CIGs. Notably, in the last Artificial Intelligence in
Medicine Europe (AIME’13) Conference, held in Murcia,
Spain, from 29/5/2013 to 1/6/2013, a whole session
(4 papers) was devoted to such an issue (Sánchez-Garzón
et al. 2013) (Jafarpour and Abidi 2013) (Riaño and Collado
2013) (Michalowski et al. 2013). The state of the art in the
computer-based treatment of co-morbidities is presented
in section “Related Works”. Despite the high quality of the
recent research approaches in the literature, the treatment
of co-morbidities is an extremely difficult and challen-
ging problem, so that substantial steps forward need
to be achieved. In the rest of the paper, we present our
contribution.
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Goals of our overall approach
The long-term goal of our overall approach is that of
extending GLARE providing physicians with a domain-
independent and guideline-independent set of tools and
methodologies to facilitate the integration of two or more
CIGs, by supporting in (i) the detection of the interactions
between two or more guidelines, (ii) the solution of the
interactions, and (iii) the merging of multiple guidelines in
the treatment of the specific patient at hand.
Our overall goal is that of providing a suite of tools and

methodologies to support physicians, providing them, as
much as possible, with information and hints that may be
helpful in their activity when facing multiple guidelines.
As a consequence, there are several desiderata that our
approach will need to meet:
Interactivity: we think that the system should help

the physician in the merging process, but it shouldn’t
replace her/him, so the system must involve the user
in decisions and must be easy to use;
Flexibility: we do not think there can be a unique

“golden” standard methodology to merge two guidelines.
Indeed, we aim at supporting physicians by providing
them with physician-driven explorations of the different
possible ways of facing the problem;
Multiple abstractions: given the complexity of the

overall task, physicians usually face it in a “top-down”
fashion, operating at multiple levels of abstractions;
supporting user-driven interactive and flexible merging of
CIGs operating at different detail levels (along different
dimensions) is one of the core goals of our approach.
In this paper, we will focus only on the first, essential,

step in the development of the above approach, namely
the development of a methodology addressing the detec-
tion of the interactions between different CIGs. It is
worth stressing that there are already two kinds of tools
that physicians use in order to supervise treatments and
detect drug interactions: information tools like PDAs on
online access to pharmacological databases (Robert Wood
Johnson Foundation and Partnership for Solutions 2004),
and alerting systems such as CPOE (Koppel et al. 2005),
that detect and inform about interactions (Medscape
(http://reference.medscape.com/drug-interactionchecker/),
Drugs.com (http://www.drugs.com/drug_interactions.html),
etc.). However, such tools mostly focus on drug-drug inter-
actions only. Unfortunately, this is only a very limited
support, when a physician has to detect and analyze
the interactions between two or more guidelines. Indeed,
though a large variety of representation formalisms exists
(Ten Teije et al. 2008), most CIG formalism support a
hierarchical decomposition of guidelines at multiple levels
of detail, in which composite actions may be represented,
and then refined (possibly at different levels of abstraction)
into their components. At the finest level of detail
therapeutic actions in the guideline may recommend,
depending on the accuracy, the use of drugs or drugs
categories, or active principles (thus, also the interactions
between drug categories must be considered). However, at
higher levels, composite actions may be better character-
ized on the basis of their intentions (i.e., of the high-level
goals they aim to achieve; consider, e.g., ASBRU (Shahar
et al. 1998). We aim at devising a more suitable and
complete support to the detection of interactions between
guidelines, in which also high-level action intentions are
taken into account, and the interaction analysis is
supported at any possible level of abstraction considered
in the guideline specification. As previously discussed,
besides multiple abstractions, interactivity and flexibility
are essential desiderata of our approach. Given the rele-
vance of such desiderata, we illustrate the need for them
through an example.

An abstract example of flexible and interactive interaction
detection and analysis
The example here is deliberately abstract, to stress the
generality of our methodology (real medical examples
will be widely provided throughout all the rest of the
paper). In the example, as well as in the approach
described in this paper, we focus our attention on the
actions in the therapeutic parts of CIGs (composite
actions and pharmacological actions, recommending
drug administrations).
Example: Suppose, for instance, that the user phys-

ician UP needs to detect the interaction between two
composite actions A1 (belonging to the guideline G1)
and A2 (belonging to the CIG G2). (S)he selects A1
from G1, and A2 from G2, and then looks for the inter-
actions. At this level of abstraction, i.e., the interaction
between the intentions of A1 (int1 in the upper part of
Figure 1) and A2 (int2 in Figure 1) is taken into account.
The possible continuation of the interaction detection

process may depend strictly on the output of such an
analysis. For instance:

Case 1 (shown in Figure 1) Suppose that, at this
level of abstraction, no interaction is found
between int1 and int2. UP wants to further
refine her search. (S)he expands A1 and A2
into the actions composing them in the CIGs,
focuses on some of them (see the lower part
of Figure 1), e.g., A11 and A12 (one of the
possible decompositions of A1 in G1, or
part of it) and A21 and A22 (one of the possible
decompositions of A2 in G2, or part of it),
which are all pharmacological actions. Then,
UP looks for the interactions between them.
In particular, pharmacological actions
prescribe the administration of drug categories
(for example, in Figure 1, we represent the fact

http://reference.medscape.com/drug-interactionchecker/
http://www.drugs.com/drug_interactions.html


Figure 1 States of guideline explorations for Case 1.
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that A11 prescribes the administration
of cat11, and so on), and the interactions
between them is further analyzed.

Case 1.1 (shown in Figure 2) Suppose that no
interaction between the drug categories
(cat11 and cat12 from G1, cat21 and cat22
from G2) is found. UP further wants to refine
his search by expanding the pharmacological
actions to the level of drugs, selecting few
drugs (e.g., Drugb for Cat11, etc., in the
graphical example in Figure 2), and, finally,
analyzing their interactions. This process can
iteratively go on until non-interacting drugs
are found for the four actions.

Case 1.2 (shown in Figure 3) On the other hand,
suppose that some interaction between the
drug categories (cat11 and cat12 from G1,
cat21 and cat22 from G2) is found. UP may
use the focusing tool to “go up” to A1 and A2,
and focus on an alternative decomposition of
them (e.g., in Figure 3, A13, A14 and A15
for A1, A23 and A24 for A2). The process
continues with the analysis of the interactions
between A13, A14 and A15 (from G1) and
A23 and A24 (from G2).

Notice that, although the above example seems to in-
dicate that interactions are always “bad” (so that they are
Figure 2 States of guideline explorations for Case 1.1.
a reason for looking for alternatives), this is not neces-
sarily true. As we will analyze in Section “Interactions
Ontology”, the spectrum of possible interactions types is
wide, and only a few types can be easily categorized
as “bad” (e.g., two intentions are “opposite”), or “good”
(e.g., two intentions are “equal”, or are “independent”). In
all the other cases, interactions are “workable” (e.g., a “re-
inforcing” interaction between two drugs can be managed
by operating on the posology of such drugs), and the user-
physician may choose to: (i) manage and “solve” them,
e.g., through the modification of drug posology, (ii) try to
avoid them, looking for alternatives, or (iii) further investi-
gate them (e.g., at a lower level of detail).
The above example clearly shows that the detection

of interaction is intrinsically an interactive process, in
which each step is “unpredictable”, since it depends on
the output of the previous step. Additionally, the above
consideration shows, that, given the output of one step,
there are (in most cases) alternative ways of going on,
and it is almost impossible to automatically choose
between them (indeed, user-physicians might accept
knowledge-based suggestions as the way to go on, but
certainly not a system-made decision).
Thus and interactive and user-driven interaction detec-

tion process are required. The goal of the work we
present in this paper is to identify a general methodology
(data/knowledge structures and reasoning algorithms
operating on them) supporting it.



Figure 3 States of guideline explorations for Case 1.2.
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A digression: knowledge-based decision support
Before starting the technical discussion, it is worth open-
ing a parenthesis to clarify the relationships between the
decision-support methodology we propose in this paper
and “standard” decision analytics methodologies. In this
paper, we neither directly apply statistical methods, nor
do we propose cost/risk – utility/benefit analysis tech-
niques. Indeed, the input of our approach is not a (big)
set of data, but two (or more) CPGs, and a medical
ontology, i.e., three (or more) different sets of knowledge.
Since guidelines and ontologies are usually quite large
bodies of knowledge, a “flat” analysis of it would be diffi-
cult, if not totally unfeasible, to users. We thus propose
a new decision support methodology, based on multiple
levels of abstraction on medical knowledge, to deal with
co-morbid patients. In particular, we focus on develop-
ing software tools and methodologies to support the
analysis of interactions between CPGs, considering also
ontological knowledge. Since CPGs and ontologies are
pieces of knowledge, our methodology is necessarily
knowledge-based (as opposed to statistical-based meth-
odologies). Nevertheless, it is important to remember
that statistical methods play a fundamental role in the
CPG context. As a matter of fact, CPGs are grounded
on the principles of evidence-based medicine, which dic-
tates that statistical and decision analytics methods must
be applied on clinical trials as a necessary preliminary
step to the identification and representation of the
evidence-based recommendations they contain. Indeed,
CPGs could thus be seen, informally speaking, as the sym-
bolic representation of best-practice patterns of clinical
processes built on the basis of the outcome of statistical
analytics on clinical trials.
Thus, CPGs in general, and our approach in particular,

are used to provide knowledge-based decision support,
grounded on statistical evidence.
As a further difference with respect to “traditional”

decision analytics methods, the main intended users of
CPGs are physicians. However, in Section “Impact on
physicians, patients and managers”, we will discuss in
more detail the possible impacts of the adoption of our
approach on physicians, healthcare managers, and pa-
tients, highlighting how healthcare managers can take
advantage of it.

Summary
The paper will be organized as follows. The section “The
GLARE formalism” presents the GLARE approach, with
specific emphasis on the physician-friendly formalism
we have devised in order to represent CIGs. The first
step of our approach is the definition of appropriate
formalisms to cope with the knowledge that is needed to
support the analysis of interactions (Section “Interac-
tions: ontological notions”). In Section “Interactions
detection algorithm”, we describe a new methodology to
explore the above-mentioned knowledge sources, and
multiple guidelines, in an interactive and flexible way. In
Section “Impact on physicians, patients and managers”,
we discuss the impact of CIGs, and of our approach, in
different healthcare contexts. In Section “Related works”,
we will describe the state-of-the-art, and, finally, we
draw the conclusions.

Methods
Main features of the GLARE system
GLARE is a long-term project started in 1997 to pro-
vide a user-friendly and domain-independent tool to
support CIG acquisition, representation and execu-
tion, and to provide the physician with a wide range
of facilities, helping her/him in decision support or
CIG analysis tasks. The main goals of the GLARE
systems are:

– to be domain-independent. In particular, GLARE
has been already applied to deal with a wide range
of CIG, ranging, e.g., from asthma to ischemic
stroke.

– to be user-friendly. GLARE is intended to be a tool
to support physicians (in particular, regarding
decision making), not at all to replace them. Such a
goal has several implications, including the facts that
(i) CIGs representation language must be as close as
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possible to the physicians’ way of looking at it, and
(ii) the “technological” complexity of the system
must be hidden to the user-physicians, through a
user-friendly and easy-to-use interface.

– to be easily extendable. Indeed, physicians should
be provided with plenty of facilities concerning CIG
treatment. Thus, the system architecture must be
modular and easily extendable.

Of course, each one of the above tasks has deeply
influenced the design of GLARE, and its main features.

GLARE representation language
In the medical literature, clinical guidelines are often
described using different levels of detail (and top-down
refinement), and oriented graphs of actions, similar to
flow-charts are often used to describe the ordering of
actions at the different levels. As a consequence, in
GLARE, a CIG can be represented as a hierarchical graph,
where nodes are the actions to be executed, and arcs are
the control relations linking them.
In GLARE, we distinguish between atomic and compos-

ite actions (plans), where atomic actions represent simple
steps in a CIG, and plans represent actions that can be
defined in terms of their components via the “has-part”
relation.
In order to be as physician-friendly as possible, a lim-

ited and “physician oriented” number of types of atomic
actions have been identified:

– work actions, i.e. actions that describe a
procedure which must be executed at a
given point of the GL;

– pharmaceutical actions, specifying a drug
(or drug category, of active principle) to be
administered to the patient, and the posology.

– decision actions, used to model the selection
among different alternatives. We have introduced
a distinction between:

� diagnostic decisions, used to make explicit the

identification of the disease the patient is
suffering from, among a set of possible diseases,
compatible with her findings. A diagnostic
decision is represented as an open set of
triples <diagnosis, parameter, score> (where, in
turn, a parameter is a triple <data, attribute,
value>), plus a threshold to be compared with
the different diagnoses’ scores;

� therapeutic decisions, used to represent the
choice between paths in a GL, where each path
represents a particular therapeutic process. The
choice can be made by evaluating a fixed set of
parameters (effectiveness, cost, side-effects,
compliance and duration);
– query actions, i.e. requests of information (typically
patient’s parameters), that can be obtained from the
outside world (physicians, databases, patient visits or
interviews). The GL execution cannot go on until
this information has been obtained;

– conclusions, which explicitly identify the output
of a decision action.

In particular, the distinction between diagnostic and
therapeutic decisions is very fundamental to physicians,
and constitutes one of the features that distinguish GLARE
from most CIG approaches in the literature. Each kind of
action is described by a set of properties. For instance, a
pharmaceutical action is described by:

– Action Type, which for each action of this category
takes the value “Administration of Medicament”,

– Substance, which describes the administered drug,
– Posology, which describes the dosage and the

modality of assumption. This property structure is
complex, since it might involve the description of
periodicity (Anselma et al. 2006).

Actions in a GL are connected through control rela-
tions. Control relations establish which actions can be
executed next, and in what order. In particular, the se-
quence relation explicitly establishes what is the following
action to be executed; the alternative relation describes
which alternative paths stem from a decision action, and
the repetition relation, states that an action has to be
repeated several times. In detail, given a repeated action,
the number of its repetitions can be fixed a priori, or,
alternatively, it can be asserted that the action must be re-
peated until a certain exit condition becomes true (in this
case, the number of repetitions is only known at runtime,
during execution). In particular, advanced AI techniques
are required to deal with temporal reasoning in repeated
actions (Anselma et al. 2006).

Architecture of the kernel of GLARE
The core of GLARE (see box on the left of Figure 4) is
based on a modular architecture. CG_KRM (Clinical
Guidelines Knowledge Representation Manager) is the
main module of the system: it manages the internal
representation of CPG, and operates as a domain-
independent and task-independent knowledge server for
the other modules; moreover, it permanently stores the
acquired CPG in a dedicated Clinical Guidelines Database
(CG-DB). The Clinical Guidelines Acquisition Manager
(CG_AM) provides expert-physicians with a user-friendly
graphical interface to introduce the CPG into the CG_
KRM and describe them. It may interact with four data-
bases: the Pharmacological DB, storing a structured
list of drugs and their costs; the Resources DB, listing



Figure 4 Architecture of GLARE. Rectangles represent computation modules, and ovals represents data/knowledge bases. The left box contains
the “core” of GLARE, while additional modules in the right of the figure depict advanced AI support for several tasks.
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the resources that are available in a given hospital (it
is therefore used to represent the context-dependent
version of a CPG); the ICD DB, containing an inter-
national coding system of diseases; the Clinical DB,
providing a “standard” terminology to be used when
building a new CPG, and storing the descriptions and
the set of possible values of clinical findings.
The execution module (CG-EM) executes a CPG for a

specific patient, considering the patient’s data (retrieved
from the Patient DB). The schema of the Patient DB
mirrors the schema of the Clinical DB. Therefore, the
inter-action with the Clinical DB during the acquisition
phase makes it possible to automatically retrieve data
from the Patient DB at execution time. CG-EM stores
the execution status in another DB (CG Instances) and
interacts with the user-physician via a graphical interface
(CG-IM).
It is worth noticing that, through the CG-AM and

CG-IM modules, GLARE provides user-friendly inter-
faces to user, achieving the goal of “hiding” them in the
internal complexity of the system.

Extended architecture
To enhance extendibility, GLARE’s architecture is open:
new modules and functionalities can be easily added to the
system if\when necessary. In recent years, we have added
new modules and\or methodologies in order to cope with
automatic resource-based contextualization (ADAPT
module, (Terenziani et al. 2004)), temporal reasoning (TR,
(Anselma et al. 2006) and (Stantic et al. 2012)), decision-
making support (DECIDE_HELP, (Montani and Terenziani
2006) and (Anselma et al. 2011)), and model-based veri-
fication (VERIFY, (Bottrighi et al. 2010)). While all the
methodologies to cope with the above issues have been
widely addressed, not all the prototypical software modules
have been implemented yet. However, we envisage a
modular architecture, in which all such modules will be
loosely coupled with the core of GLARE, as shown in the
right part of Figure 4.
Since the focus of this paper is decision support, in the

following we briefly explain our decision-making facility
(see (Montani and Terenziani 2006) and Anselma et al.
(2011) for more details).

Decision-theory-based decision support in GLARE
When executing a CIG on a given patient, a physician
can be faced with a choice among different therapeutic
alternatives, and identifying the most suitable one is
often not straightforward. Actually in several situations
no alternative is really “better” than the others, from a
strictly clinical viewpoint, and CIGs are only meant to
present all the range of choices, leaving the user the
responsibility of selecting the “right” one.
In clinical practice, various selection parameters (such

as the costs and effectiveness of the different procedures)
are sometimes available when executing a CIG, but the
task of comparing and balancing them is typically left to
the user. Decision theory seems a natural candidate as a
methodology for supporting this analysis; to this hand,
we have created a mapping between the CIG represen-
tation primitives and decision theory concepts, and a
decision theory tool for supporting therapy selection in
GLARE.
In short, in a well-formed CIG, a therapeutic decision

action is always preceded by a query action, which is
adopted to collect all the patient’s parameters necessary
(and sufficient) for taking the decision itself. Each thera-
peutic decision is therefore based on an (explicit or im-
plicit) data collection completed at decision time, and
does not depend on the previous history of the patient.
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We can thus say that the CIG describes a first-order
Markov model, since each time a query action is im-
plemented, the patient’s situation is completely re-assessed,
and an (explicit or implicit) query action is always found
before a decision action. This observation allows us to rep-
resent a CIG as a Markov Decision Process (MDP), which
has been recognized as a basic representation framework
for dynamic decision making under uncertainty.
In particular, it is straightforward to define the concept

of state as the set of patient’s parameters that are nor-
mally measured for taking decisions and for assessing
therapy outcomes. On the other hand, we consider work
actions as the means of producing state transitions, since
they are the only actions with a potential effect on the
state variables. The utility of reaching a state can be
evaluated in terms of life expectancy, corrected by Quality
Adjusted Life Year (QALYs) (Gold et al. 1996). We can
derive the utility of a state from the medical literature, as
we do for obtaining the probability of state transitions.
Costs can be interpreted as monetary expenses: each work
action will have a price. Additionally, costs can also be
evaluated in terms of the time and the resources required
to complete work actions.
On the basis of these preliminary mapping consi-

derations, which are general enough to be easily applied
within any of the systems for the computerized manage-
ment of CPGs described in the literature, we are imple-
menting a decision theory facility in GLARE. In our
approach, the MDP describing the CIG is represented
resorting to a dynamic decision network (Tatman and
Shachter 1990), a choice that allows one to explicitly
take advantage of conditional independencies from
the modeling viewpoint. In particular, the GLARE deci-
sion theory facility will enable the user: (1) to identify the
optimal policy, and (2) to calculate the expected utility
along a path, by exploiting classical powerful dynamic pro-
gramming algorithms.

Interactions: ontological notions
Motivations for and advantages of an ontology-based
approach
The first step of our approach is the definition of an
ontology, clarifying the semantics of interactions, and
modeling the different knowledge sources involved in
their detection and analysis. In health informatics,
ontologies are defined as “collections of formal, machine-
processable and human interpretable representation of the
entities, and the relations among those entities, within a
definition of the application domain” (Rubin et al. 2006).
Since 2001, there has been an increasing use of onto-

logical approaches to health (Liaw et al. 2013). As a matter
of fact, the adoption of formal ontologies is almost becom-
ing standard in medical informatics, since it provides many
advantages, including terminological standardization and
the definition of a common semantics. For instance,
SNOMED (http://www.ihtsdo.org/snomed-ct/) is a widely
used clinical terminology, and stresses that “the use of a
standard clinical terminology makes a significant contri-
bution towards improving the quality and safety of health-
care by enabling consistent representation of meaning in
an electronic health record”. In particular, the definition of
an ontology for interactions allows us to achieve several
different goals:
Define shared semantics for guidelines and interac-

tions: we need to define a semantic model for interac-
tions and guidelines actions. Such semantic model must
be shared and “understood” both by information systems
and by human users (Gruber 2009; Rubin et al. 2006).
Define a standard for terminology and representa-

tion: GLARE is a standard for guidelines representation.
The use of ontologies for the action model supports the
standardization between different guidelines. In addition,
ontologies are often used to disambiguate terms. The
use of existing and consensus ontologies for data repre-
sentation avoid ambiguities and allows the reuse of the
knowledge.
Unify different sources: in the medical field, data can

derive from different sources. Unify them using ontol-
ogies helps to improve data quality (Liaw et al. 2013).
Reason on the data: the use of standard ontology

representation as RDF or OWL allows processing the
content of information through existing reasoners
(McGuinness and van Harmelen 2004): “by incorporat-
ing defined rules, ontologies may also generate logical in-
ferences” (Pérez-Rey et al. 2006).

Interactions and levels of abstraction
Our ontology of interactions is based on the consi-
deration that physicians usually analyze the interactions
between guidelines at different levels of detail. At the
highest level, they take into account the intentions (or
goals) of actions (see, e.g., examples 1 and 2 in the fol-
lowing). Then, moving towards more specific information,
they may also consider the interactions between specific
drugs categories (e.g., Example 3), and, finally, between
specific drugs (e.g., Example 4).
Example 1. Intentions Interaction: in the treatment of

edema due to heart failure, the main intention is to de-
crease the accumulation of fluids. In the case in which
that particular patient also manifests a syncope crisis, it
is likewise necessary to increase the blood pressure. How-
ever, this later intention forces the heart to a higher ac-
tivity, which in turn may increase the heart failure,
worsening the edema.
Example 2. Intentions Interaction: in patients affected

by thrombosis, anticoagulant drugs are usually adminis-
tered, in order to decrease the formation of thrombi. If
the patient affected by thrombosis has also a risk of

http://www.ihtsdo.org/snomed-ct/
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bleeding (e.g. due to a minor surgery) the anticoagulant
therapy must be discontinued because of the need to
increase the blood coagulation.
Example 3. Drug Categories Interaction: the adminis-

tration of antacids (category) at the same time of other
drugs orally administered can change the intestinal absorp-
tion of the later decreasing their effects (e.g. levofloxacin).
Example 4. Drugs Interaction: in many cases, interac-

tions involve individual drugs. For example, between tri-
methoprim and sulfamethoxazole there is a strengthening
synergism: the antibiotic effect of their concomitant admin-
istration is stronger than the sum of the two single effects.
Our goal is to devise a general ontology underlying the

detection of guideline interactions. Our methodology is
completely general, and we are not committed to any
specific pre-existent ontology. However, given its rele-
vance and generality, we use the SNOMED ontology
(http://www.ihtsdo.org/snomed-ct/) as a reference one.
Sometimes we also consider the Anatomical Therapeutic
Chemical (ATC) ontology (http://www.whocc.no/atc) as
concerns the drug classification. We extend them in
order to model both the different sources of interactions
(intentions, drugs categories, drugs) and the different
types of interactions between them.
For the sake of interaction detection, the description of

guideline actions must include the intention of composite
and work actions, or the drug (class of drugs, active
principle) of pharmacological actions. We first describe our
ontology of intentions (subsection “Intentions Ontology”)
and of drug classes (subsection “Drug Classes Ontology”).
Then, in subsection “Interactions Ontology”, we describe
our ontology for the interactions (between intentions, and
between drug classes and drugs).

Intentions ontology
At a high level of abstraction, an action can be repre-
sented by its objectives or (desired) effects. In this sec-
tion, we focus on the objectives of composite actions
(plans), work actions and pharmacological ones, and we
Figure 5 Representation of the Intention “Decrease Blood Pressure”.
typical intention hierarchy.
call them Intentions (i.e., the goals that the physician
expects to obtain realizing that action)a.
Intentions can be organized along a hierarchy of ISA

and PART-OF relations: high-level intentions can be
decomposed into lower-level intentions, and alternative
decompositions are possible.
For instance, Figure 5 shows (not exhaustively) the

hierarchy of the intention “Decrease Blood Pressure”. That
intention is typically obtained through the realization
of several lower-level intentions and many alternative
decompositions (and combinations between them) are
possible. Then, lower level intentions can be decomposed
by many part-of relations (as can be seen for the “Improve
Lifestyle” intention), or not (for example “Block of
Calcium Channels”). A particular case is represented by
the combination of more intentions in order to reinforce
the higher-level one: the intention “Inhibition of Angio-
tensin Converting Enzyme (ACE)” is both a sub-intention
of “Decrease Blood Pressure” and a part of the combined
intention “Decrease Blood Volume + ACE Inhibition”.
Ultimately, at the lower level, the intentions can be

described as (desired) modifications of specific parame-
ters of the patient status. In the following, we call such
intentions atomic intentions. In our ontology, atomic
intentions can be represented by a couple <BodyPartAt-
tribute, Modality> in which BodyPartAttribute is the
attribute that is expected to change, and Modality is an
element belonging to the set {Increasing, Decreasing,
Stability} and describes how the attribute is expected to
change. Of course, if needed, the hierarchy of modalities
might be further refined. For instance, we can distin-
guish between different degrees of increase/decrease.
Figure 6 shows that BodyPartAttribute is in its turn
connected with the respective body part. Both concepts
have a counterpart in SNOMED Ontology: BodyPart
is equivalent to the SNOMED concept “Body Struc-
ture” and BodyPartAttribute to the SNOMED concept
“Observable Entity”, whilst concepts of Intention and
Modality are not included in SNOMED.
The image is not exhaustive due to space limitations, but represents a

http://www.ihtsdo.org/snomed-ct/
http://www.whocc.no/atc


Figure 6 Ontology of atomic intentions.

Piovesan et al. Decision Analytics 2014, 1:8 Page 10 of 24
http://www.decisionanalyticsjournal.com/content/1/1/8
We illustrate the concepts previously described by an
example (see Figure 7): the intention of improving the
cardiac activity can be to increase (Modality) the cardiac
activity (BodyPartAttribute), which is in turn linked
to the BodyPart cardiovascular system. Both Cardiac
Activity and Cardiovascular System are individuals of the
SNOMED Ontology.

Drug classes ontology
As discussed in Section “GLARE representation language”,
in GLARE the representation of a pharmacological action
includes, amongst others, an attribute (substance) that
specifies the drug category (or the specific drug, depend-
ing on the level of detail of the CIG itself) prescribed in
order to achieve the action’s atomic intention. The value
of such an attribute is a link to a sub-concept of the
ontological concept DrugCategory (see the higher part of
Figure 8).
Figure 7 “Improve cardiac activity” intention.
DrugCategory (and its refinements in the hierarchy)
are used in order to achieve (atomic) intentions (see the
“aimsTo” arc in Figure 8).
The DrugCategory concept is not flat: it is the root of

a hierarchy of categories and its expansion depends on
the classification used. In fact, there are in literature sev-
eral ways to classify the drugs (e.g. those based on the
chemical type of the active ingredient, those based on
the way they are used to treat a particular condition,
etc.). We will use the SNOMED classification for our
examples: its concept “Drugs or Medicaments” (that is
hierarchically organized) contains our concepts DrugCa-
tegory and Drug. However, our approach is independent
of the chosen classification, so it is possible to use also
other ones (e.g., ATC).
A hierarchical classification of drugs is crucial: several

CIGs identify accurate pharmacological prescriptions,
pointing out specific drugs, whilst other ones can identify



Figure 8 Drug categories and drugs ontology.
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the only drug categories of the pharmacological actions,
leaving the physician the task of choosing the drug
case by case.
In general, our methodology (see Section “Interaction

Detection Algorithm”) is independent of the specific
ontology, since it supports the navigation of the drug
category ontology along the ISA relationships.

Interactions ontology
As discussed above, our approach supports the descrip-
tion of CIGs at different levels of abstractions. First of
all, GLARE supports top-down action refinement in the
action description, through the decomposition of nested
composite actions (plans) into their parts (components).
Plans are “high-level” actions, aiming at achieving “high-
level” goals, i.e., intentions (see Figure 5). At a finer level
of details, GLARE pharmacological and work actions
(which are part of plans) have atomic intentions, which
can be achieved through the administration of drugs
(see Figure 8). In turn, drugs can be organized through a
multiple-level hierarchy of abstraction, going from drug
categories to specific drugs (see Figure 9).
Consequently, it is important to notice that interaction

can be identified (with different levels of detail) at each one
of the different levels of abstraction. As a consequence, in
our ontology, we distinguish between IntentionInterac-
tions, AtomicIntentionInteractions, and DrugCategoryIn-
teractionsb. In Figure 10, we show the higher level of our
ontology of interactions.
IntentionInteraction is an interaction between two

intentions, and has an InteractionType. In Figure 11, we
distinguish between three basic types of interactions be-
tween intensions. The “Independence” type covers cases
Figure 9 Complete Warfarin classification (following the SNOMED hie
in which the intentions do not interact. The “Concord-
ance” type covers cases in which the two intentions are
not independent, but reinforce each other (see example
5 below). The “Discordance” type covers cases in which
the two intentions negatively interact with each other
(see for instance example 1).
Notice that we have deliberately chosen to support a

“fuzzy” representation of interactions. Indeed, in many
cases, medical intentions are not 100% in agreement or
disagreement. However, more “sharp” types of interac-
tions can also be added to the ontology. For instance,
the “Opposite” type could be added as a refinement of
the “Discordance” type, to cope with opposite intentions
(see example 6 below).
As shown in Figure 11, AtomicIntentionInteraction is

a subconcept (ISA arc) of Intention Interaction, being an
Interaction between two AtomicIntentions (which, in
turn, are Intentions).
Drug category interactions (see Figure 12) occur be-

tween two Drug Categories (or subconcepts), and cause
a variation of their (atomic) intentions. In our formalism,
an interaction between two or more drug categories is
modeled as the variation of one or more atomic inten-
tions of the actions involved in the interaction itself, so
it is completely described by the intentions it changes
and the variation it causes. Since an atomic intention is
itself described by a modality, an interaction is a vari-
ation of that modality (MV) and its domain is the same
set {Increasing, Decreasing, Stability} seen for the con-
cept Modality (see below examples 3, and 7 in the next
section).
The representation of drug-drug interactions (i.e., in-

teractions between two Drugs) is similar, but requires at
least one of the elements involved belongs to the Drug
class (see examples 4, and 8 below).

Interactions detection algorithms
It is worth stressing again that interaction detection
should be performed at different levels of abstraction,
since, in several cases, top-down refinement along the
different hierarchies is needed to detect specific inter-
actions. Of course, results strictly depend on the level of
abstraction chosen by the user physician. For instance,
some interactions can be discovered considering the
higher abstraction level of Intentions.
rarchy).



Figure 10 Interactions ontology.
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Example 5. Diuretics are a category of drugs frequently
used for the treatment of edema (intention). In the case
that a patient affected by edema should be treated for
hypertension (intention: “decrease blood pressure”), the
physician may administer ACE inhibitors or calcium chan-
nel blockers. Most of the drugs belonging to these categories
do not present explicit interactions with diuretics; however,
as shown in Figure 5, the intention of diuretics (i.e., “de-
crease blood volume” in the Figure 5), of ACE inhibitors
(i.e., “inhibition of ACE”) and of calcium channel blockers
(i.e., “block of calcium channels”) are all sub intentions
(ISA arcs in the figure) of the same high-level intention
“decrease blood pressure”. Therefore, the physician can
decide to change the posology of the administered drugs.
Other interactions come out only at the lowest abstrac-

tion level of Atomic Intentions (e.g., of the pharmaco-
logical prescription actions).
Example 6. One of the sub-intentions of the high-level

intention to “decrease the urinary retention” is to stimu-
late contraction of the bladder. That, in turn, can be ob-
tained through the stimulation of the muscarinic receptors
(atomic intention), administering, for example, bethane-
cholc (drug). If the patient is affected by peptic ulcer a
parallel intention should be to decrease the gastric acid
secretion, that can be obtained by the inhibition of the
muscarinic receptors (atomic intention), administering
Figure 11 Intentions interactions.
pirenzepined (drug). The two atomic intentions are obvi-
ously conflicting.
In other cases, interactions may show up only at the

drug category level: pharmacological actions may have
independent intentions, but the drug categories they imply
may interact with each other.
Example 7. Vasoconstrictors (drug category), for in-

stance adrenaline (drug), reduce the absorption of the lido-
caine (drug), which is a local anesthetic (drug category),
enhancing its effect. However, anesthetic intention (for lido-
caine) and treatment of anaphylaxis (one of the intentions
of adrenaline) do not interact.
Last, some interactions can be detected only at the

lowest level, considering specific drugs.
Example 8. Warfarin (drug) is an anticoagulant

(drug category) used to prevent the formation of
thrombi (intention), whilst erythromycin (drug) is an
antibiotic (drug category) commonly used, for instance,
in the treatment of respiratory tract infections (intention).
There is no interaction between the two categories
they belong to; however, the anticoagulant effect of
warfarin is enhanced by the simultaneous use of
erythromycin.
Our focusing tool is quite innovative, since it allows

the physician to navigate both knowledge sources (the
CIGs and the ontology) together, thus complementing



Figure 12 Drug and drug category interactions.
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the general knowledge in the CIGs with the additional
knowledge in the ontology.
In this section, we will describe a new methodology to

explore the above-mentioned knowledge sources in an
interactive and flexible way. In Section “Main features of
the GLARE system”, we have shown that GLARE (as
well as most CIG formalisms) supports different abstrac-
tion levels (through the part-of hierarchy of actions) in
the description of CPGs. In Section “Interactions: onto-
logical notions”, we have described how our ontology
supports the description of different types of interactions
at the different abstraction levels, describing not only in-
teractions between general intentions, but also more
specific interactions between drug categories, and drugs.
Two main issues must be considered for the definition

of an approach for detection of interaction considering
the above knowledge sources

(1) Integration between CIGs and ontology
(2) Interactions with user-physicians.

Integration between CIGs and ontology
The integration between CIGs and ontology is import-
ant, since, in many cases, CIG actions are described at
quite a high level of detail, while specific interactions
may arise at lower levels. For instance frequently CIG
pharmacological actions only indicate drug categories.
However, at the very end, a specific drug of that category
must be prescribed to the specific patient, and we have
previously shown examples in which, while two drug
categories do not interact, specific drugs of the two
categories do interact. Such interactions can only be
detected if the CIG knowledge is expanded with the
knowledge (about drug interactions) in the ontology,
and achieving such an integration is one of the main
results of our tool.
Abstractly speaking, in our approach, the integration
of the knowledge in the CIG and the one in the ontology
provides three main levels of detail (henceforth called
“dimensions”) at which interactions can be studied:

(1) Action dimension. This dimension is specified
directly by the CIG, in which each composite
action can be refined into its components
(which, in turn, may be composite).

(2) Drug category dimension. Such a dimension is
specified by the ontology.

(3) Drug dimension. Such a dimension is specified
by the ontology, as the bottom level of the drug
category hierarchy.

In our approach, the two knowledge sources (i.e., CIGs
and ontology) are strictly connected: as mentioned
above, the types of CIG actions and the values of many
properties of actions are links to ontological notions
(see, e.g., the description of pharmacological actions in
Section “GLARE representation language”). In particular,
in our approach the representation of pharmacological
actions in the CIGs provide the crucial link for the ex-
pansion: through the substance attribute, each pharma-
cological action specifies a drug category (or, in some
cases, a specific drug) to be used, pointing out to the
concept representing it in the ontology.

Interactions with user-physicians
In our opinion, a black-box tool that, given two (or
more) CIGs and the ontology, provides in output all
the possible interaction actions in the CIGs (possibly
considering also the possible “expansions” provided by
the ontology), is not really useful for the user-physicians.
CIGs often consist of hundreds of actions, and the
pharmacological prescriptions they contain may often be
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Figure 13 Growth of a guideline navigator depending of some
actions. Level 1 is the view of the entire guideline, level 2 is built
due to a ZOOM-IN action (referred to the highlighted action), whilst
level 3 after a SELECT one.

Piovesan et al. Decision Analytics 2014, 1:8 Page 14 of 24
http://www.decisionanalyticsjournal.com/content/1/1/8
achieved through the adoption of several different drugs.
Thus, a tool detecting interactions between any pair of
actions and drugs belonging to two (or more) CIGs, and
blindly operating at all levels of abstraction, would simply
output too many interactions to be useful to the physician.
For such a reason, we aim at devising a flexible and
interactive detection tool allowing physicians to navigate
through the different abstraction levels, thus supporting
the natural methodology they adopt to cope with co-
morbidities. For instance, at the highest level, a physician
may want to start considering only the interactions
between the intentions of the “macro-actions” of the
guidelines. Then, focusing on a specific part of the guide-
line, (s)he may want to move down to a more detailed
analysis, considering the decomposition of the “macro
action” into its parts, and/or the specific drugs category
considered in order to reach the high-level intentions. In
general, our approach will provide physicians with the
possibility of moving in both directions, i.e., going down
from a general to a more specific analysis, or moving up,
from a specific analysis to a higher level of abstraction.

Interaction detection process
Summing up, as a result of the above consideration, our
approach consists of two main tools:

(i) a focusing tool, allowing physicians to navigate into
the CIGs to be merged, selecting subparts of them
and/or expanding/abstracting them at the chosen
level of detail (considering all the three dimensions)

(ii) an interaction analysis tool that, given the output of
the focusing on two or more CIGs, analyses the
interactions, at the level of abstraction chosen
through the focusing tool.

When analyzing the interaction between two or more
CIGs, the user-physician can iteratively use such tools to
create her/his “personalized” interaction detection process,
as required by the specific circumstances and goals.
In other words, instead of providing a pre-defined
(and unique) way of detecting interactions, and super-
impose it on user-physicians, we provide her/him with
the proper tools, allowing her/him to interactively work
out the detection process (s)he needs (please remember
the comments to Example in the “Background” Section).
Given the general picture, we now refine it by providing

the focusing and the interaction analysis tools.

The focusing tool
The focusing tool is recursive and highly interactive: at
each time the physician user chooses a part of one of the
guidelines or a specific action and the dimension along
which (s)he wants to explore it. Then the system pro-
vides the new visualization of the guideline considering
that expansion. The exploration status of each guideline
is maintained in a guideline_navigator: this data struc-
ture keeps track of each expansion done. A guideline
navigator can be represented as an ordered list of views
(guideline_view) of the same CIG: initially, it is initialized
to the view that represents the higher level of abstraction
of the guideline, then, each time the user performs an
exploration action (described in the following), a new
level representing the new view is added to the guideline
navigator. During the navigation, when the user decides
to return to a higher level of abstraction, the last level of
the navigator is deleted. Figure 13 shows in detail the
structure of a guideline navigator.
Given two or more CIGs to be merged, a guideline

navigator is used for each one of them, and the user-
physician can operate independently on each one of
them. Three basic operations are provided for focusing:
ZOOM_IN, ZOOM_OUT, and SELECT.
The SELECT operation allows the user to create a new

level of the navigator, which contains only the selected
action (s).
The ZOOM-OUT operation recovers the penultimate

expansion in a guideline navigator, deleting the last view.
The ZOOM-IN operation creates a new abstraction

level in the guideline navigator, allowing for user-driven
refinements. The definition of such an operation is quite
complex, since it may consider refinements along differ-
ent and heterogeneous levels of abstraction, and the user
can operate recursively (i.e., decide to refine newly deter-
mined refinements).
The ZOOM-IN operation is applied on a guideline_

navigator (gn1 in the algorithm in Figure 14), and modi-
fies it, by appending a new guideline_view (New_View),
which represents the new refinement. At the initialization
step, the user has to specify which actions of the last
guideline view of gn1 (s)he wants to modify (To_Refine_
Set is initialized by such a set of actions). If To_Refine_Set



Figure 14 The ZOOM_IN algorithm.
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is not empty, then New_View is created as a copy of the
last view of gn1. Then, each action a in To_Refine_Set is
independently refined, through the REFINE operation (see
later). The REPLACE operation simply substitutes a with
the newly identified refinements into New_View. When-
ever a new refinement is added, we allow users to update
To_Refine_Set, adding actions of the new refinement to it.
In such a way, we provide users with the possibility of
going on with this process until the desired level of detail
is reached.
The REFINE operation takes in input a guideline_view

(gv) and a action in it, and performs one step of refine-
ment. The way in which such a refinement is obtained
depends on the type of a. If a is a composite action in
the guideline_view gv, its expansion is simply the sub-
guideline constituted by the actions composing it. Thus,
the refinement can be easily determined on the basis of
the description of the guideline gv itself. On the other
hand, if a is a pharmacological action, the representation
of a contains the attribute substance, whose value is a
link to the ontological entity representing drug category
to be administered (drug_cat). Thus, through the Down
operator, the algorithm determines the set of descen-
dants of drug_cat in the ISA hierarchy in the ontology
(the case in which a is a specific drug is a degenerate
one, in which the result of Down is empty). Of course,
each one of the descendants c1, …,cn is a possible
alternative refinement of drug_cat. To convert this
notion into a guideline-like format, the function BUILD_
ALTERNATIVES constructs a new piece of guideline, con-
sisting of a decision node connected to n pharmacological
action nodes (each one prescribing one of the drug cat-
egories c1, …,cn). We worked at an OWL implementation
of the ontology queries that are part of the algorithms,
thus we highlight them in the figures. We expresses quer-
ies through the Manchester syntax (http://www.w3.org/
2007/OWL/wiki/ManchesterSyntax) for OWL-DL, sup-
ported by Protégé reasoners. In the Figure 15, for example,
the descendants of the substance of the action a are
obtained through the query:

“(Drug or DrugCategory) and isA some (inverse sub-
stance value a)”.

The nested query “inverse substance value a” retrieves all
the drugs or drug categories linked to the action ae, while
the external one returns all the elements in the ontology
that are directly descendants of at least one of the first (in
this case, inheritance is not considered along isA arcs).

Interaction analysis algorithm
Once the level of abstraction of the analysis has been speci-
fied by the user-physician, through the focusing tool, (s)he
may look for the interactions at the chosen level. Though
the Interaction analysis easily applies also to cases in which
more than two CIGs are considered, for the sake of brevity
here we consider only the case of two CIGs. After the fo-
cusing analysis, the user-physician has determined exactly
which parts of the CIGs (s)he is interested in, possibly
expanding CIGs with the ontology (e.g., expanding a phar-
macological action prescribing a drug category into a
therapeutic decision followed by the actions of adminis-
tering its sub-categories), to reach the desired level of
abstraction/detail. At this point, the interaction analysis
tool operates as described in the ANALYSE_INTER-
ACTIONS operation below (see Figure 16).
Given two guideline views gv1 and gv2, all composite,

work and pharmacological actions are considered. The

http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
http://www.w3.org/2007/OWL/wiki/ManchesterSyntax


Figure 15 The REFINE algorithm.
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set of pairs of actions <a1, a2> such that a1 belongs to
gv1, and a2 belongs to gv2 is constructed (intPairSet),
and the result (intTripleSet) is initialized to the empty
set. Notice that intTripleSet is a set of triples <a1, a2,in-
teractions>, where <a1, a2> is a pair in intPairSet, and
interactions is a set of interactions (the possible interac-
tions between a1 and a2). Then, for each pair <a1, a2>
in intPairSet, the algorithms of interaction search are
applied, returning the set interactions of possible interac-
tions (see the algorithms below), and the triple <a1, a2,
interactions> is added to the set intTripleSet.
Interaction search algorithms operate only on pairs

of “homogeneous” actions. Indeed, this is not restrict-
ive, since we provide user with operators (ZOOM-IN,
Figure 16 The ANALYSE_INTERACTIONS algorithm.
ZOOM-OUT) to choose the desired level of abstraction.
If a1 and a2 are both composite or work actions, the in-
teractions between their intentions have to be analyzed in
the ontology. In our ontology, pharmacological actions
have intentions (indeed, atomic intentions), and prescribe
the administration of drug categories (or drugs). Thus,
both the interactions between intentions and those be-
tween drug categories (or drugs) are considered. However,
in the case of pharmacological actions added to the CIG
by the expansion step (see BUILD_ALTERNATIVES in the
REFINE operator), no intention is specified (the system
cannot automatically determine action intentions), so that
only the interactions between the prescribed drug categor-
ies (drugs) are considered.
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Given two actions a1 and a2, FIND_INTENTION_
INTERACTIONS finds the interactions between their
intentions. Since actions in CIGs may have multiple
intentions, all of them are retrieved (considering the
aimsTo arcs exiting a1 and a2 in the ontology). Two
types of intention interactions are captured by the
algorithm FIND_INTENTION_INTERACTIONS in the
following. The first type (onto_interactions in the algo-
rithm) is determined by looking at the ontological infor-
mation. For each pair <i1,i2> of intentions (such that i1 is
an intention of a1 and i2 of a2), the ontology is explored
(by following backward the arc hasElement of the concept
IntentionInteraction) in order to determine the interaction
holding between them. Then, the retrieved interaction is
added to the set onto_interactions. On the other hand,
some interactions between atomic intentions can be auto-
matically inferred even if they are not directly specified in
the ontology. Specifically, if two intentions concern the
same BodyPartAttribute, but involve different variations
for it, the respective interaction can be automatically
inferred. Such a second type of interactions is deter-
mined by the second part of algorithm. In particular,
if two intentions share the same value of Modality,
their interaction is classified as “Concordance”, whilst,
in other cases, its classification is “Discordance”, with
a specific case in which the modalities are opposite
(“Decreasing” and “Increasing”) and the interaction type is
“Opposite”. Such interactions are added to the ontology,
and the union of the two types of interactions is returned
as output.
Figure 17 The FIND_INTENTION_INTERACTIONS and the FIND_DRUG_
Finally, FIND_DRUG_INTERACTIONS is defined in a
similar way but, obviously, involves searching the ontology
for different paths of arcs.
For both the algorithms, we provide an implemen-

tation based on OWL. As previously exposed, the FIND_
INTENTION_INTERACTIONS needs to retrieve two
types of interactions: those that already exist into the
knowledge base and those that can be automatically in-
ferred starting from it The first phase of the algorithm
(see Figure 17) consists in a query that retrieves all the
IntentionInteractions between the set of intentions of the
first action a1 and the one of a2. The resulting set of inter-
actions (that corresponds to the onto_interactions) is not
exhaustive because the ontology does not contain the in-
teractions between all the possible couples of intentions.
At this point we need to infer the interaction type between
each couple of intentions <i1,i2>, belonging respectively to
a1 and a2 sets, that have not a corresponding interaction
in onto_interactions. In order to achieve this objective we
extended the ontology through a set of Semantic Web
Rules (http://www.w3.org/Submission/SWRL/) and we
use them in order to assign to each interaction an inferred
type. An interaction regarding i1 and i2 is added to the
ontology (in the algorithm, for the sake of brevity, we de-
note as ‘new IntentionInteraction’ a constructor that cre-
ates the individual and the arcs hasElement to i1 and i2),
then rules added an arc hasType if they recognize
automatically a type for that interaction. Rules can
automatically recognize both “Concordance” and “Discord-
ance” types (included the “Opposite” one), also considering
INTERACTIONS algorithms.

http://www.w3.org/Submission/SWRL/
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inheritance of BodyPartAttributes. For example, the follow-
ing couple of rules infer a “Discordance” type considering
inheritance:

IntentionInteraction(?inter), hasEle-
ment(?inter,?i1), hasElement(?inter,?
i2), focusOn(?i1,?bpa), focusOn(?i2,?
bpa2), isA(?bpa2,?bpa), hasModality(?i1,?
mod1), hasModality(?i2,?mod2), Different-
From(?mod1,?mod2)
-> hasType(?inter, discordance)

The above rule creates an arc hasType that reaches ‘Dis-
cordance’, starting from an IntentionInteraction inter that
has two elements i1 and i2 that focus on two BodyPartAt-
tributes which are, in the isA hierarchy, one an ancestor of
the other and which have different modalities. For the
sake of brevity, we omit other similar rules, such as the
one for inferring ‘Concordance’. Due to the Open World
Assumption intrinsic in OWL reasoners, the ‘Independ-
ence’ type cannot be automatically inferred, but we con-
sider independent all those interactions that have not an
interaction type after the application of the above rules.
The last step of the algorithm consist in a second

query on the extended ontology. This query is equal to
the first one. However, at this time the resulting set of
interactions contains also the interactions added in the
second part of the algorithm.
The algorithm FIND_DRUG_INTERACTIONS (Figure 17)

is simpler, because the interactions between drugs are
explicitly stored in the ontology. It is consists of a query
that retrieves all the drug category interactions or drug in-
teractions that involve at least one drug (or drug category)
recommended by the action a1 and one recommended by
a2 (following forward the substance arcs).

Results and discussions
Impact on physicians, patients and managers
In this Section, we discuss the impact of CPGs and CIGs
in general (with specific reference to the facilities pro-
vided by the GLARE system), and then, more specific-
ally, the impact of the approach described in this paper.
We consider two different but related issues:

(1) The analysis of who can use CIGs, and our
approach, and how/when

(2) The analysis of the advantages that the use of
CIGs provides to physicians, patients, and
managers/healthcare organizations.

Use of CIG tools
Obviously, the main users of CPGs, and of their com-
puterized versions (CIGs), are physicians. Indeed, the
primary goal of CPGs is to support physicians in their
decision making activities, providing them with appropri-
ate evidence-based recommendations for the diagnosis
and/or treatment of a specific disease. CIG approaches
further enhance the support to physicians, e.g., automatic-
ally focusing on the specific part of the clinical guideline
under actual consideration, and automatically “customiz-
ing” the guideline to the specific patient at hand, thanks to
an automatic connection to the Patient Health Record.
Several advanced CIG approaches can be used by physi-
cians to have different forms of decision support. For in-
stance, the approach in Terenziani et al. (2002) provides
physicians with “What If” analysis, and the methodology
in (Montani and Terenziani 2006; Anselma et al. 2011) ap-
plies standard Decision Theory concepts to the CPG con-
text, in order to provide to user-physicians a cost/benefit
analysis (where costs are estimated as Quality Ad-
justed Life Years (Gold et al. 1996)). The treatment of
several diseases (e.g., many chronic diseases) involves sev-
eral actors (e.g., caregivers, family and hospital physicians,
community physicians) not geographically co-located. In
such a case, CIG approaches like the one in Bottrighi et al.
(2013) can provide crucial advantages for agent coor-
dination and delegation, granting for the continuity and
the quality of the treatment, as well as for its optimization.
Interestingly, also patients may be direct users of

some CIG tool. The recent European project MobiGuide
(www.mobiguide-project.eu/) aims to provide personalized
secure clinical-guideline-based guidance to monitored
patients also outside the clinical environment. In such
a project, users are provided with software tools help-
ing them to personalize certain cost/utility decisions,
and to directly access CIGs recommendations.
On the other hand, the healthcare managers’ perspec-

tive is quite different: they are not generally involved in
the application of a specific CIG to a specific patient.
However, they are focused on clinical processes, on their
quality, and on their optimization. Thus, they can use
the consultation facilities provided by CIG approaches in
order to have a general view of how clinical processes
should be organized, according to the best-practice de-
rived from the medical evidence. In addition, managers
can use approaches such as Bottrighi et al. (2012) in
order to check the adherence (conformance) of the clinical
processes executed in one or more healthcare organi-
zations with the best-practice processes suggested by
CIGs. This analysis might be helpful not only to study the
quality of the treatments provided, but also for cost/
process optimization purposes. Finally, and more import-
ant, healthcare managers are involved in the definition
and application of healthcare processes in their organiza-
tions. Usually, CPGs are “general” bodies of knowledge,
often developed by national/international committees,
providing “high-level” best-practice recommendations and
procedures. Thus, there is often quite a huge gap between

http://www.mobiguide-project.eu/
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general CPGs (and CIGs) and the actual procedures exe-
cuted in a specific organization (e.g., in a specific hospital).
Both local restrictions (e.g., not all the technological in-
struments are available in all the hospitals) and local
optimizations must be considered, to contextualize a gen-
eral CIG to a specific organization. So far few software
tools have been developed to help managers in such a
challenging task (consider, e.g., Terenziani et al. (2002)).

General advantages provided by the adoption of CIGs
The adoption of CPGs and, in particular, of CIGs, provides
crucial advantages. CIGs provide decision support to phy-
sicians, giving them evidence-based recommendations on
the treatment of a specific patient, considering patient’s
data (CIG tools usually support an automatic retrieval of
patient’s relevant data from the Patient Health Record).
Of course, the main gain is for individual patients,

since CIGs enforce the quality of healthcare treatments,
on the basis of the up-to-date medical evidence.
However, a major gain is also provided to healthcare

managers and organizations. As a matter of fact, the
adoption of CIG in a (local, regional, national, or even
international) healthcare organization provides crucial
advantages such as

– A guarantee about the quality of the provided
healthcare services (since they are dictated by the
most up-to-date medical knowledge and evidence)

– A guarantee about the standardization of such
services. This issue may be crucial in several
geographically “sparse” and not-homogeneous
regions, or countries.

– A support in the coordination of healthcare
services (for treatments that involve multiple and
not geographically co-located actors)

– A support for process and cost optimization
(still granting the quality of services).

However, it is important to remember that CPGs are,
roughly speaking, a set of evidence-based recommenda-
tions about the treatment of patients affected by one
specific disease. Thus, they apply to “typical” patients,
affected by a disease. Specific patients, with specific (and
atypical, from the point of view of the treated disease)
conditions, may not be suited for the treatments sug-
gested by the evidence-based CPG. In such cases, it is
usually up to the physician to understand that the pa-
tient is, somehow, atypical for the CPG, and to identify
the appropriate adaptations of the treatment suggested
by the CPG.
The identification of the adaptations is particularly

challenging for co-morbid patients, who, having two or
more diseases, are “atypical” (with respect to the CPGs
coping with such diseases, independently of each others).
This issue is addressed by the approach presented in
this paper.

Advantages and uses of our approach for interaction
detection
The approach we propose in this paper is a first step in
the direction of providing appropriate decision support
facilities also in this challenging (but, unfortunately,
quite frequently, especially in elder patients) context. In
particular, since for co-morbid patients two (or more)
CIGs have to be “merged”, we devised a methodology to
detect and analyze the interactions between CIGs. The
basic and original idea of our approach is that multiple
levels of abstractions should be used to accomplish such
a challenging task. Indeed, operating at different level of
abstraction provides at least two main types of advan-
tages to our approach.

(1) User-friendliness. As a matter of fact, clinical
reasoning usually takes into account different levels
of detail. First, general tasks are identified, and then
refined (top-down refinement). Also, in critical
cases, problems in the achievement of low-level
tasks can lead back to the revision of higher-level
tasks (bottom-up revision process). A user-friendly
tool supporting clinical decision must thus provide
such a flexibility.

(2) Generality. Since we support switching among
different levels of abstraction, our approach is quite
general, and can be exploited in different contexts,
and by different users.

In particular, both physicians and managers can use
the approach described in this paper.
First of all, our approach can support a physician

treating a specific comorbid patient. In such a context,
the possibility of moving down from the “general” actions
in the CIGs to the analysis of the interactions of specific
drug categories and also of specific drugs is of paramount
importance.
However, thanks to its generality, our approach can be

used also for the “abstract” analysis (i.e., just considering
the guidelines, with no reference to a specific patient) of
the interactions between two or more guidelines that are
commonly used together, with the final goal of providing
some combined guideline (or, at least, part of it) merging
them. In such a case, the possibility of reasoning also about
“high-level” actions\tasks in CIGs is certainly crucial.
The analysis of interactions and the “partial merge” of

two CIGs may be carried on by managers and physi-
cians, and may lead to new clinical procedures that
ensure both clinical quality and optimization of costs.
The detection and analysis of interactions is a crucial
step in order to achieve such a goal:
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– “negative” interactions (e.g., interactions in which
one drug decreases the effect of the other, or, even
worst, has the opposite effect of the other) are
(usually) to be avoided, since they may be dangerous
for the patient and, anyway, are not cost effective.

– “positive” interactions (e.g., interactions in which
one drug decreases the effect of the other, or has
the same effect of the other) are (usually) desirable,
because they achieve the “common” goals of the
two guidelines. Of course, if two actions, one in a
guideline and one in the other, achieve the same
goal and have similar clinical side effects, one
(the most costly) of the two may be omitted in the
“combination of guidelines”, to optimize costs.
Moreover, in the cases of administration of drugs
“reinforcing” each other’s effects, the drug posology
may be reduced, thus also reducing the cost of
treatments.

In general, we strongly believe that, giving the increasing
number of co-morbid patients (also due to the increasing
aging of the population in many countries), and the social
impact of co-morbidities, the definition of new clinical pat-
terns which are both evidence-based and optimized is likely
to have a significant positive impact in local and/or na-
tional/international healthcare systems and organizations.

Related works
Given its economic and social impact, healthcare manage-
ment plays a crucial role in modern society. For instance,
evidence continues to mount that healthcare is increas-
ingly challenged by entrenched inefficiencies, including
wasting more than US$2 trillion annually Korsten and
Seider (2010). As a consequence, several research areas,
including computer science, are devoting increasing atten-
tion to healthcare.
In particular, given the need to deal with the large

amounts of data (“big” data), decision analytics method-
ologies play an important role in this context.

“Healthcare organizations around the world are
challenged by pressures to reduce costs, improve
coordination and outcomes, provide more with less and
be more patient centric. Yet, at the same time, evidence
is mounting that the industry is increasingly challenged
by entrenched inefficiencies and suboptimal clinical
outcomes. Building analytics competency can help these
organizations harness “big data” to create actionable
insights, set their future vision, improve outcomes and
reduce time to value.” Cortada et al. (2012).

Given the variety of phenomena to be taken into ac-
count, several different mainstreams of research have
been pursued:
Predictive modeling. The goal of predictive modeling
is to derive models that can use patient-specific infor-
mation to predict the outcome of interest and to thereby
support clinical decision-making (Bellazzi and Zupan
2008). Predictive modeling techniques are used, e.g., to
predict patient long-term status Zupan et al. (2001), for
prognostic and diagnostic classification (Schwarzer et al.
2000).
Data mining. The data mining techniques aim at

extracting knowledge from huge amounts of data through
automatic or semi-automatic methods:

– Text mining, or text analytics, is the process that
extracts relevant information from (big amount of )
text expressed in the form of natural language
(Chen et al. 2005). It is employed in healthcare,
for example, in order to discover new knowledge
patterns or hypotheses from the large amount of
existing and new literature in biomedicine (Yandell
and Majoros 2002). The IBM decision support
system Watson (http://www-03.ibm.com/
innovation/us/watson/watson_in_healthcare.shtml),
based also on natural language processing, “can
incorporate treatment guidelines, electronic medical
record data, doctor’s and nurse’s notes, research,
clinical studies, journal articles, and patient
information into the data available for analysis”.

– Process mining is an emerging technology in the
context of Business Process Management with the
goal to derive process models from observed system
behavior (Lang et al. 2008). A relevant example is
the process mining adopted in the treatment of
stroke (Mans et al. 2008).

Evaluation. This family of analytic techniques aims to
compare two or more alternative courses of action in
terms of costs and outcomes. In particular:

– Cost-benefit analysis is “a form of economic evaluation
that can be used to assess value in terms of money for
healthcare intervention” (Kattan 2009). Managers
usually use it in order to evaluate the impact of
certain innovations in the health care field. In Wang
et al. (2013), e.g., it is used to evaluate the impact of
electronic medical records in primary care.

– Cost-effectiveness analysis “involves comparisons
of the additional costs and health benefit of an
intervention with those of the available alternatives”
(Kattan 2009). Managers can use it in order to
perform resource-allocation decisions considering
the ratio of net health-care costs to net health
benefits (Weinstein and Stason 1977; Robinson 1993).

– Cost–consequences analysis performs the same task
of the cost-effectiveness one, but it does not

http://www-03.ibm.com/innovation/us/watson/watson_in_healthcare.shtml
http://www-03.ibm.com/innovation/us/watson/watson_in_healthcare.shtml
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aggregate the results (it expresses explicitly, in a
table, cost and outcomes of all the alternatives). It is
generally more suitable for user physicians in the
decision-making process (Mauskopf et al. 1998).

– Risk-benefit analysis weighs the potential for
undesirable outcomes and side effects against the
potential for positive outcomes of a treatment and is
an integral part of the process of determining
medical necessity in the delivery of quality medical
care. It is particularly used by physicians in order
to decide whether to perform a certain treatment
on a patient in the presence of known risks
(see, e.g., Speroff et al. (1991)).

Neural networks. Despite the fact that neural networks
are a technique used in many of the previous fields, their
use in medicine has been so extensive that they deserve to
be considered as a separate topic. A relevant example of
the use of neural networks in healthcare is in the area of
decision support (Lisboa and Taktak 2006).
In particular, the approach presented in this paper

focuses on a relevant healthcare problem: the treatment of
co-morbidities. As explained in subsection “A critical issue:
the treatment of co-morbid patients” (in the Background),
this is quite a peculiar context, in that the “best practice”
profiles of clinical treatment are often available, in the form
of CIGs, and the problem is to “compose” two (or more) of
them, also on the basis of other forms of explicit know-
ledge (e.g., knowledge about drug effects and interactions).
Excluding few common features, the existing methods

are very different from each other. Sánchez-Garzón et al.
(2013), for example, attempts to capture the collabora-
tive aspect of the merging: each guideline is considered
by a physician who is expert in the treatment of a single
disease, and represented by an agent with hierarchical
planning capabilities. The result is obtained through the
coordination of all the agents, and respects the recom-
mendations of each guideline. Another interesting ap-
proach, presented in Michalowski et al. (2013) and Wilk
et al. (2013), uses constraint logic programming to iden-
tify and address adverse interactions. In this solution, a
constraint logic programming (CLP) model is derived
from the combination of logical models that represent
each CIG, then a mitigation algorithm is applied to detect
and mitigate interactions. Among rule-based systems,
López-Vallverdú et al. (2012) represent guidelines as sets
of clinical actions that are modeled into an ontology. To
combine two treatments, first they are unified in a unique
treatment, then a set of “combination rules” is applied to
detect and avoid possible interactions. Jafarpour and Abidi
(2013) use semantic-web rules and an ontology for the
merging criteria. Given these, an Execution Engine
dynamically merges several CIGs according to merge
criteria. GLINDA proposes a wide ontology of cross-
guideline interactions (Musen et al. 2011). Despite the
methods used are very different from each other, one can
classify them according to two (orthogonal) criteria. First,
CIG can be merged before or during the execution (Abidi
2008). In the second case the methodology “take account
also of execution and of patient data”, while in the first
the result of merging is a general treatment that needs to
be customized for each patient and situation. Another im-
portant distinction arises between autonomous methods
and others that require (or allow) physician intervention.
In the first, given two or more CIGs, the system returns a
merged guideline without user intervention. In the sec-
ond, during the process, (s)he can be consulted to take de-
cisions about merging options. This last category (to
which, for example, belongs López-Vallverdú et al. (2012)
is very interesting, because it allows the use of a basic
medical knowledge that only the physician possesses, and
that is very difficult to a priori extract and model into an
autonomous system.

Conclusions
The treatment of patients affected by multiple diseases
(comorbid patients) is one of the main challenges for
the modern health care, also due to population aging
and to the increase of chronic diseases. In many cases,
guidelines coping with each one of the diseases (inde-
pendently of the others) may be available. However,
combining guidelines is a challenging task and a hot
topic in the most recent research in Medical Informatics.
Though several valuable proposals have been pointed
out in the specialized literature (see the “Related Works”
section), the complexity of the overall problem demands
additional steps forward of the state-of-the-art.
In this paper, we address a significant part of the prob-

lem, namely the detection of interactions between CIGs.
Relevant studies demonstrate that various types of inter-
actions must be taken into account when merging two
(or more) CIGs, and propose an ontology of interactions
(Musen et al. 2011). However, to the best of our know-
ledge, our approach is the first one that identifies differ-
ent levels of abstractions in the analysis of interactions,
based on both the hierarchical organization of CIGs (in
which composite actions are refined into their compo-
nents) and the hierarchy of drug categories (specific
drugs often constitute the bottom of such a hierarchy).
We show that interactions can occur at each level of
abstraction, so that the medical interaction detection
process must navigate all levels. In addition, medical ex-
perience shows that the detection of interaction must be
an interactive process, in which, at each step, user-
physicians decide how to proceed on the basis of the
previous steps.
In this paper, we propose a general methodology

(data/knowledge structures and reasoning algorithms
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operating on them) supporting user-driven and inter-
active interaction detection over multiple levels of abstrac-
tion. To the best of our knowledge, no other approach in
the literature has explicitly addressed such a challenging
goal. In this sense, we believe that our approach, besides
being innovative, is somehow complementary in respect of
several other approaches in the literature, so that an
integration with them can be a possible area of future
work (e.g., with Riaño and Collado (2013) methodology to
merge CIGs).
The main contributions of our work are:

(1) We identified three different abstraction levels at
which interactions can occur: between actions in
CIGs, between drug categories, and, finally,
between specific drugs

(2) We worked out an ontology of interactions,
considering the three levels above

(3) We clarified that the study of CIG interactions can
be performed only by considering the expansion of
CIGs with (part of ) the ontological knowledge

(4) Last, but most important, we proposed a set of
tools and operations supporting user-physician-
driven interactive interaction detection along the
three different levels of abstraction.

The above results can be regarded as the starting point
of a new computer-based methodology to cope with co-
morbidities, based on the notion of multiple abstractions.
Carrying on such a new line of research will involve inter-
esting new scientific challenges, especially concerning
the development of suitable flexible and interactive
approaches to support physicians in the solution of
interactions at different levels of abstractions.
We are currently developing a prototypical implemen-

tation to demonstrate our approach, based on GLARE.
In our short-term future work, we aim at extending our
approach to cope also with “patient – CIG action” inter-
actions and “patient – drug” interactions, and to cope
with the temporal issues (e.g., not all interactions be-
tween CIGs are possible, due to the temporal constraints
between CIG actions).
In our long-term future work, we will attempt to

achieve the goals specified in the section “Goals of our
overall approach”: supporting physicians also in the
interaction solving, and, finally, in merging multiple
guidelines in the treatment of the specific patient at
hand. In order to achieve such a challenging goal, we
envision extending our current approach to decision-
theory-based cost/benefit analysis. As discussed in the
subsection “Decision-theory-based decision support in
GLARE”, already adopts cost/benefit analysis to support
the choice between clinically equivalent therapies. How-
ever, not only in our approach Montani and Terenziani
(2006), but in most healthcare analytics techniques, only
single morbidities are taken into account. Our long-term
goal is to integrate our Decision Support System with
the knowledge needed to merge the results of single-
morbidity analytics in order to provide decision-makers
with all those decision support facilities already investi-
gated and developed considering single diseases only.

Endnotes
aPlease notice that, in this paper, we deliberately use

the term “intention” in a broad sense, to cover not only
the desired effects of medical actions, but also the effects
of pharmacological prescriptions, and of drugs.

bIndeed, in our ontology we also take into account
other types of interactions, involving the status of the
patient. In particular, the patient status may interact with
the Intentions of composite actions, with the atomic in-
tentions of pharmacological prescriptions, and with
DrugCategories. Such issues are not taken into account
in this paper, where we focus only on “patient-
independent” detection of CIGs interactions.

cBethanechol is an agonist of muscarinic receptors, be-
longing to the acetylcholine drug category.

dPirenzepine is an antagonist of muscarinic receptors,
belonging to the atropine drug category.

eThe keyword inverse is used to navigate forward a
link. In particular, the query returns all the elements in
the co-domain that are connected to the element (s) in
the given domain (defined through the value construct).
On the contrary, when inverse is absent, properties are
navigated backwards.
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